


# FM | Handbuch

HB97D\_FM | RD\_254-1BA00 | Rev. 13/02 Januar 2013



#### Copyright © VIPA GmbH. All Rights Reserved.

Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch -extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an:

VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH

Ohmstraße 4, D-91074 Herzogenaurach, Germany

Tel.: +49 (91 32) 744 -0 Fax.: +49 9132 744 1864 EMail: info@vipa.de http://www.vipa.com

#### Hinweis

Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informationen bleibt jedoch vorbehalten.

Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.

#### EG-Konformitätserklärung

Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften übereinstimmen.

Die Übereinstimmung ist durch CE-Zeichen gekennzeichnet.

#### Informationen zur Konformitätserklärung

Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH.

#### Warenzeichen

VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.

SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH.

SIMATIC, STEP, SINEC, TIA Portal, S7-300 und S7-400 sind eingetragene Warenzeichen der Siemens AG.

Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.

Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.

Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

#### **Dokument-Support**

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefax: +49 9132 744 1204 EMail: documentation@vipa.de

#### **Technischer Support**

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefon: +49 9132 744 1150 (Hotline)

EMail: support@vipa.de

# Inhaltsverzeichnis

| Über dieses Handbuch                      | 1    |
|-------------------------------------------|------|
| Sicherheitshinweise                       | 2    |
| Teil 1 Grundlagen und Montage             | 1-1  |
| Sicherheitshinweis für den Benutzer       | 1-2  |
| Systemvorstellung                         | 1-3  |
| Abmessungen                               |      |
| Montage                                   |      |
| Demontage und Modultausch                 | 1-11 |
| Verdrahtung                               |      |
| Aufbaurichtlinien                         | 1-14 |
| Allgemeine Daten                          | 1-17 |
| Teil 2 Hardwarebeschreibung               | 2-1  |
| Leistungsmerkmale                         | 2-2  |
| Aufbau                                    |      |
| Technische Daten                          | 2-7  |
| Teil 3 Einsatz                            | 3-1  |
| Übersicht der Parameter und Übergabewerte | 3-2  |
| Parametrierung                            |      |
| Datenübergabe CPU >> FM 254               |      |
| Betriebsarten                             |      |
| Datenübergabe FM 254 >> CPU               | 3-12 |

# Über dieses Handbuch

Das Handbuch beschreibt das MotionControl Servo Modul FM 254 aus dem System 200V von VIPA. Hier finden Sie alle Informationen, die für Inbetriebnahme und Betrieb erforderlich sind.

#### Überblick

### Teil 1: Grundlagen und Montage

Kernthema dieses Kapitels ist die Vorstellung des System 200V von VIPA. Hier finden Sie alle Informationen, die für den Aufbau und die Verdrahtung einer Steuerung aus den Komponenten des System 200V erforderlich sind. Neben den Abmessungen sind hier auch die allgemeinen technischen Daten des System 200V aufgeführt.

### Teil 2: Hardwarebeschreibung

Hier wird näher auf die Hardware-Komponenten des FM 254-1BA00 eingegangen.

Die Technischen Daten finden Sie am Ende des Kapitels.

#### Teil 3: Einsatz

In diesem Kapitel finden Sie Informationen über die Datenübertragung und die Betriebsarten des MotionControl Servo Moduls FM 254 für Servo-Antriebe.

# Zielsetzung und Inhalt

Das Handbuch beschreibt das MotionControl Servo Modul FM 254 aus dem System 200V von VIPA. Beschrieben wird Aufbau, Projektierung und Anwendung.

Dieses Handbuch ist Bestandteil des Dokumentationspakets mit der Best.-Nr.: HB97D\_FM und gültig für:

| Produkt | BestNr.        | ab Stand:<br>HW |
|---------|----------------|-----------------|
| FM 254  | VIPA 254-1BA00 | 01              |

## **Zielgruppe**

Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in der Automatisierungstechnik.

## Aufbau des Handbuchs

Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.

# Orientierung im Dokument

Als Orientierungshilfe stehen im Handbuch zur Verfügung:

- Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs
- Übersicht der beschriebenen Themen am Anfang jedes Kapitels

#### Verfügbarkeit

Das Handbuch ist verfügbar in:

- gedruckter Form auf Papier
- in elektronischer Form als PDF-Datei (Adobe Acrobat Reader)

# Piktogramme Signalwörter

Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausgezeichnet:



#### Gefahr!

Unmittelbar drohende oder mögliche Gefahr.

Personenschäden sind möglich.



### Achtung!

Bei Nichtbefolgen sind Sachschäden möglich.



#### Hinweis!

Zusätzliche Informationen und nützliche Tipps

# Sicherheitshinweise

# Bestimmungsgemäße Verwendung

Das FM 254 ist konstruiert und gefertigt für:

- alle VIPA System-200V-Komponenten
- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank



#### Gefahr!

Das Gerät ist nicht zugelassen für den Einsatz

• in explosionsgefährdeten Umgebungen (EX-Zone)

#### **Dokumentation**

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb



Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Hardware-Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Hardware-Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

#### **Entsorgung**

Zur Entsorgung des Geräts nationale Vorschriften beachten!

# Teil 1 Grundlagen und Montage

## Übersicht

Kernthema dieses Kapitels ist die Vorstellung des System 200V von VIPA. Hier finden Sie alle Informationen, die für den Aufbau und die Verdrahtung einer Steuerung aus den Komponenten des System 200V erforderlich sind. Neben den Abmessungen sind hier auch die allgemeinen technischen Daten des System 200V aufgeführt.

| Inhalt | Thema                               | Seite |
|--------|-------------------------------------|-------|
|        | Teil 1 Grundlagen und Montage       | 1-1   |
|        | Sicherheitshinweis für den Benutzer | 1-2   |
|        | Systemvorstellung                   | 1-3   |
|        | Abmessungen                         | 1-5   |
|        | Montage                             | 1-7   |
|        | Demontage und Modultausch           | 1-11  |
|        | Verdrahtung                         | 1-12  |
|        | Aufbaurichtlinien                   | 1-14  |
|        | Allgemeine Daten                    | 1-17  |

# Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen.

Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:



Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin.

Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen.

Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen.

Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

# Versenden von Baugruppen

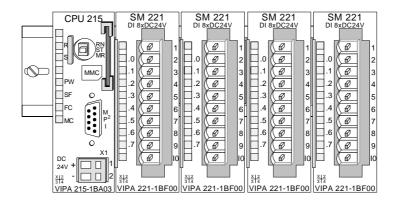
Verwenden Sie für den Versand immer die Originalverpackung.

Messen und Ändern von elektrostatisch gefährdeten Baugruppen Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potentialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.



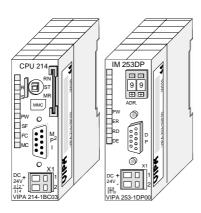

#### Achtung!

Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

# Systemvorstellung

### Übersicht

Das System 200V ist ein modular aufgebautes Automatisierungssystem für die Montage auf einer 35mm Profilschiene. Mittels der Peripherie-Module in 4-, 8- und 16-Kanalausführung können Sie dieses System passgenau an Ihre Automatisierungsaufgaben adaptieren.




# Komponenten

Das System 200V besteht aus folgenden Komponenten:

- Kopfmodule wie CPU und Buskoppler
- Peripheriemodule wie I/O-, Funktions- und Kommunikationsmodule
- Netzteile
- Erweiterungsmodule

#### Kopfmodule



Beim Kopfmodul sind CPU bzw. Bus-Interface und DC 24V Spannungsversorgung in ein Gehäuse integriert.

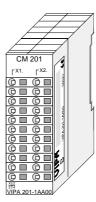
Über die integrierte Spannungsversorgung werden sowohl CPU bzw. Bus-Interface als auch die Elektronik der angebunden Peripheriemodule versorgt.

### Peripheriemodule



Die einzelnen Module werden direkt auf eine 35mm-Profilschiene montiert und über Busverbinder, die vorher in die Profilschiene eingelegt werden, an das Kopfmodul gekoppelt.

Die meisten Peripheriemodule besitzen einen 10- bzw. 18poligen Steckverbinder. Über diesen Steckverbinder werden Signal- und Versorgungsleitungen mit den Modulen verbunden.


#### Netzteile



Die DC 24V Spannungsversorgung kann im System 200V entweder extern oder über eigens hierfür entwickelte Netzteile erfolgen.

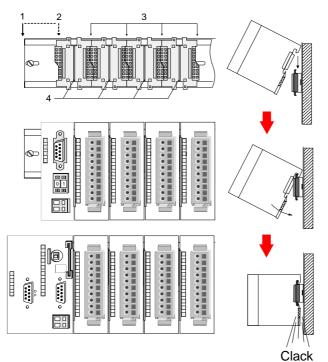
Das Netzteil kann zusammen mit dem System 200V Modulen auf die Profilschiene montiert werden. Es besitzt keine Verbindung zum Rückwandbus.

# Erweiterungsmodule



Die Erweiterungsmodule sind unter anderem Ergänzungs-Module für 2- oder 3-Draht Installation.

Die Module haben keine Verbindung zum Rückwandbus.


#### Aufbau/Maße

- Profilschiene 35mm
- Maße Grundgehäuse:

1fach breit: (HxBxT) in mm: 76x25,4x74 in Zoll: 3x1x3 2fach breit: (HxBxT) in mm: 76x50,8x74 in Zoll: 3x2x3

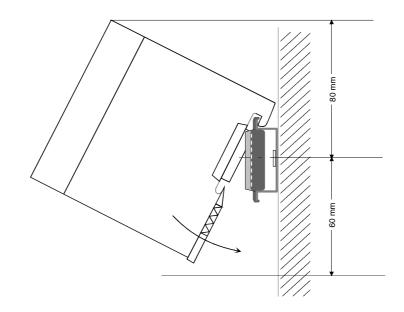
#### **Montage**

Bitte beachten Sie, dass Sie Kopfmodule nur auf Steckplatz 2 bzw. 1 und 2 (wenn doppelt breit) stecken dürfen.



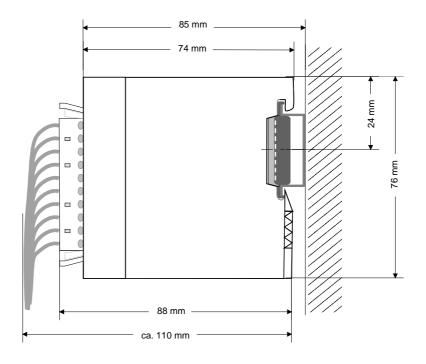
| [1] | Kopfmodul        |
|-----|------------------|
|     | (doppelt breit)  |
| [2] | Kopfmodul        |
|     | (einfach breit)  |
| [3] | Peripheriemodule |
| [4] | Führungsleisten  |

#### **Hinweis**

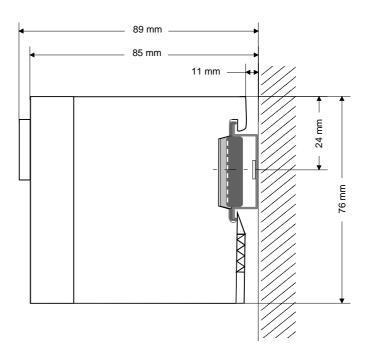

Angaben zur maximalen Anzahl steckbarer Module und zum maximalen Strom am Rückwandbus finden Sie in den "Technischen Daten" des entsprechenden Kopfmoduls.

Bitte montieren Sie Module mit hoher Stromaufnahme direkt neben das Kopfmodul.

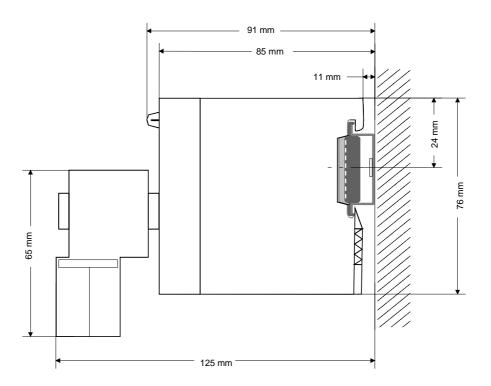
# **Abmessungen**


Maße 1fach breit (HxBxT) in mm: 76 x 25,4 x 74
Grundgehäuse 2fach breit (HxBxT) in mm: 76 x 50,8 x 74

# Montagemaße




# Maße montiert und verdrahtet


Ein- / Ausgabemodule

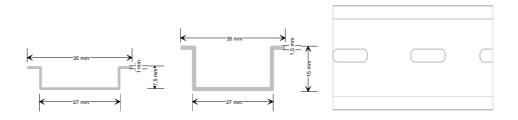


Funktionsmodule/ Erweiterungsmodule



CPUs (hier mit VIPA EasyConn)



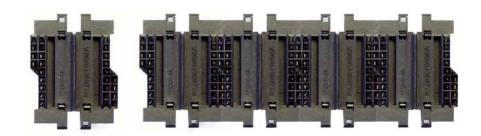

# **Montage**

### Allgemein

Die einzelnen Module werden direkt auf eine 35mm-Profilschiene montiert und über Rückwandbus-Verbinder verbunden. Vor der Montage ist der Rückwandbus-Verbinder in die Profilschiene einzulegen.

### **Profilschiene**

Für die Montage können Sie folgende 35mm-Profilschienen verwenden:



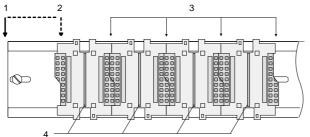

| Bestellnummer | Bezeichnung        | Beschreibung            |
|---------------|--------------------|-------------------------|
| 290-1AF00     | 35mm-Profilschiene | Länge 2000mm, Höhe 15mm |
| 290-1AF30     | 35mm-Profilschiene | Länge 530mm, Höhe 15mm  |

#### Busverbinder

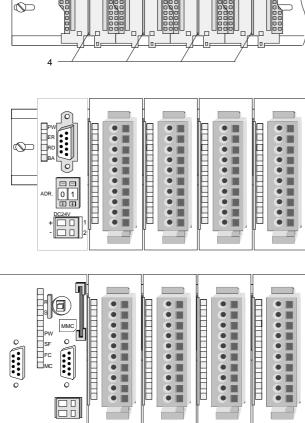
Für die Kommunikation der Module untereinander wird beim System 200V ein Rückwandbus-Verbinder eingesetzt. Die Rückwandbusverbinder sind isoliert und bei VIPA in 1-, 2-, 4- oder 8facher Breite erhältlich.

Nachfolgend sehen Sie einen 1fach und einen 4fach Busverbinder:




Der Busverbinder wird in die Profilschiene eingelegt, bis dieser sicher einrastet, so dass die Bus-Anschlüsse aus der Profilschiene herausschauen.

| Bestellnummer | Bezeichnung  | Beschreibung |
|---------------|--------------|--------------|
| 290-0AA10     | Busverbinder | 1fach        |
| 290-0AA20     | Busverbinder | 2fach        |
| 290-0AA40     | Busverbinder | 4fach        |
| 290-0AA80     | Busverbinder | 8fach        |

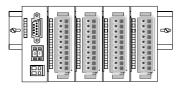

### Montage auf Profilschiene

Die nachfolgende Skizze zeigt einen 4fach-Busverbinder in einer Profilschiene und die Steckplätze für die Module.

Die einzelnen Modulsteckplätze sind durch Führungsleisten abgegrenzt.



- [1] Kopfmodul (doppelt breit)
- [2] Kopfmodul (einfach breit)
- [3] Peripheriemodule
- [4] Führungsleisten




Montage unter Berücksichtigung der Stromaufnahme

- Verwenden Sie möglichst lange Busverbinder.
- Ordnen Sie Module mit hohem Stromverbrauch direkt rechts neben Ihrem Kopfmodul an. Im Service-Bereich von www.vipa.com finden Sie alle Stromaufnahmen des System 200V in einer Liste zusammengefasst.

#### Montagemöglichkeiten

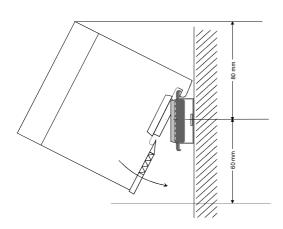
# waagrechter Aufbau



#### liegender Aufbau

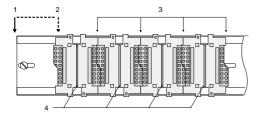


# Aufbau




senkrechter Beachten Sie bitte die hierbei zulässigen Umgebungstemperaturen:

> waagrechter Aufbau: von 0 bis 60°C senkrechter Aufbau: von 0 bis 40°C liegender Aufbau: von 0 bis 40°C


Der waagrechte Aufbau beginnt immer links mit einem Kopfmodul. Rechts daneben sind die Peripherie-Module zu stecken.

Es dürfen bis zu 32 Peripherie-Module gesteckt werden.

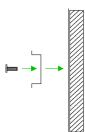


### Bitte bei der Montage beachten!

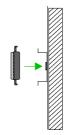
- Schalten Sie die Stromversorgung aus bevor Sie Module stecken bzw. abziehen!
- Halten Sie ab der Mitte der Profilschiene nach oben einen Montageabstand von mindestens 80mm und nach unten von 60mm ein.



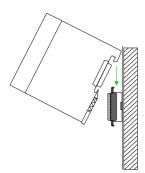
- Eine Zeile wird immer von links nach rechts aufgebaut und beginnt immer mit einem Kopfmodul.
  - [1] Kopfmodul (doppelt breit)
  - [2] Kopfmodul (einfach breit)
  - [3] Peripheriemodule
  - [4] Führungsleisten
- Module müssen immer direkt nebeneinander gesteckt werden. Lücken sind nicht zulässig, da ansonsten der Rückwandbus unterbrochen ist.
- Ein Modul ist erst dann gesteckt und elektrisch verbunden, wenn es hörbar einrastet.
- Steckplätze rechts nach dem letzten Modul dürfen frei bleiben.



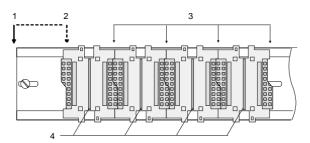

#### Hinweis!


Angaben zur maximalen Anzahl steckbarer Module und zum maximalen Strom am Rückwandbus finden Sie in den "Technischen Daten" des entsprechenden Kopfmoduls.

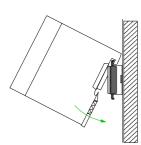
Bitte montieren Sie Module mit hoher Stromaufnahme direkt neben das Kopfmodul.


# Montage Vorgehensweise




 Montieren Sie die Profilschiene. Bitte beachten Sie, dass Sie ab der Mitte der Profilschiene nach oben einen Modul-Montageabstand von mindestens 80mm und nach unten von 60mm einhalten.



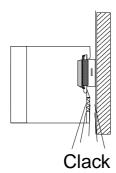

 Drücken Sie den Busverbinder in die Profilschiene, bis dieser sicher einrastet, so dass die Bus-Anschlüsse aus der Profilschiene herausschauen. Sie haben nun die Grundlage zur Montage Ihrer Module.



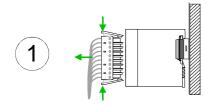
• Beginnen Sie ganz links mit dem Kopfmodul, wie CPU, PC oder Buskoppler und stecken Sie rechts daneben Ihre Peripherie-Module.



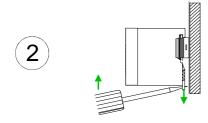
- [1] Kopfmodul (doppelt breit)
- [2] Kopfmodul (einfach breit)
- [3] Peripheriemodule
- [4] Führungsleisten



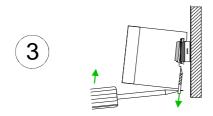

 Setzen Sie das zu steckende Modul von oben in einem Winkel von ca. 45 Grad auf die Profilschiene und drehen Sie das Modul nach unten, bis es hörbar auf der Profilschiene einrastet. Nur bei eingerasteten Modulen ist eine Verbindung zum Rückwandbus sichergestellt.



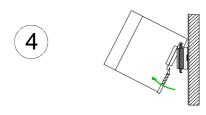

#### Achtung!


Module dürfen nur im spannungslosen Zustand gesteckt bzw. gezogen werden!

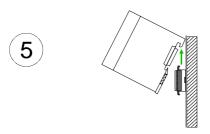



# **Demontage und Modultausch**




• Entfernen Sie falls vorhanden die Verdrahtung an dem Modul, indem Sie die beiden Verriegelungshebel am Steckverbinder betätigen und den Steckverbinder abziehen.




 Zur Demontage des Moduls befindet sich am Gehäuseunterteil eine gefederter Demontageschlitz. Stecken Sie, wie gezeigt, einen Schraubendreher in den Demontageschlitz.



Entriegeln Sie durch Druck des Schraubendrehers nach oben das Modul.



• Ziehen Sie nun das Modul nach vorn und ziehen Sie das Modul mit einer Drehung nach oben ab.





Module dürfen nur im spannungslosen Zustand gesteckt bzw. gezogen werden!

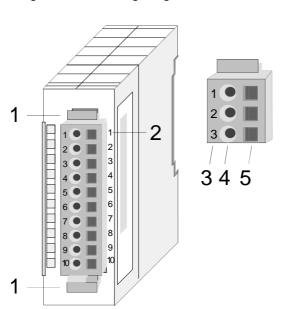
Bitte beachten Sie, dass durch die Demontage von Modulen der Rückwandbus an der entsprechenden Stelle unterbrochen wird!



# Verdrahtung

### Übersicht

Die meisten Peripherie-Module besitzen einen 10poligen bzw. 18poligen Steckverbinder. Über diesen Steckverbinder werden Signal- und Versorgungsleitungen mit den Modulen verbunden.


Bei der Verdrahtung werden Steckverbinder mit Federklemmtechnik eingesetzt.

Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen.

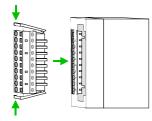
Im Gegensatz zur Schraubverbindung, ist diese Verbindungsart erschütterungssicher. Die Steckerbelegung der Peripherie-Module finden Sie in der Beschreibung zu den Modulen.

Sie können Drähte mit einem Querschnitt von 0,08mm<sup>2</sup> bis 2,5mm<sup>2</sup> (bis 1,5mm<sup>2</sup> bei 18poligen Steckverbindern) anschließen.

Folgende Abbildung zeigt ein Modul mit einem 10poligen Steckverbinder.



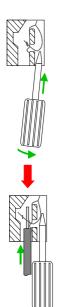
- [1] Entriegelungshebel
- [2] Pin-Nr. am Modul
- [3] Pin-Nr. am Steckverbinder
- [4] Anschluss für Draht
- [5] Öffnung für Schraubendreher



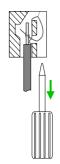

#### Hinweis!

Die Federklemme wird zerstört, wenn Sie den Schraubendreher in die Öffnung für die Leitungen stecken!

Drücken Sie den Schraubendreher nur in die rechteckigen Öffnungen des Steckverbinders!


### Verdrahtung Vorgehensweise




 Stecken Sie den Steckverbinder auf das Modul bis dieser h\u00f6rbar einrastet. Dr\u00fccken Sie hierzu w\u00e4hrend des Steckens, wie gezeigt, die beiden Verriegelungsklinken zusammen.

Der Steckerverbinder ist nun in einer festen Position und kann leicht verdrahtet werden.

Die nachfolgende Abfolge stellt die Schritte der Verdrahtung in der Draufsicht dar.



- Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung.
- Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² (bei 18poligen Steckverbindern bis 1,5mm²) anschließen.



Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit dem Steckverbinder verbunden.



#### Hinweis!

Verdrahten Sie zuerst die Versorgungsleitungen (Spannungsversorgung) und dann die Signalleitungen (Ein- und Ausgänge)!

# **Aufbaurichtlinien**

#### **Allgemeines**

Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau von System 200V Systemen. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV), sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.

# Was bedeutet EMV?

Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.

Alle System 200V Komponenten sind für den Einsatz in rauen Industrieumgebungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störquellen in die Betrachtung einbeziehen.

# Mögliche Störeinwirkungen

Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden in Ihre Steuerung einkoppeln:

- Felder
- E/A-Signalleitungen
- Bussystem
- Stromversorgung
- Schutzleitung

Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung.

Man unterscheidet:

- galvanische Kopplung
- kapazitive Kopplung
- induktive Kopplung
- Strahlungskopplung

### Grundregeln zur Sicherstellung der EMV

Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elementarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.

- Achten sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile.
  - Stellen sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her.
  - Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm.
  - Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet.
- Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung.
  - Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen).
  - Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.
  - Führen sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).
- Achten sie auf die einwandfreie Befestigung der Leitungsschirme.
  - Datenleitungen sind geschirmt zu verlegen.
  - Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
  - Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
  - Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
  - Verwenden Sie für geschirmte Datenleitungen metallische oder metallisierte Steckergehäuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
  - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
  - Beachten Sie, dass bei Einsatz von Leuchtstofflampen sich diese negativ auf Signalleitungen auswirken können.
- Schaffen Sie ein einheitliches Bezugspotential und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
  - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
  - Verbinden Sie Anlagenteile und Schränke mit dem System 200V sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
  - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

# Schirmung von Leitungen

Elektrische, magnetische oder elektromagnetische Störfelder werden durch eine Schirmung geschwächt; man spricht hier von einer Dämpfung.

Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störquelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich.

Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:

- die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann
- Analogsignale (einige mV bzw. μA) übertragen werden
- Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen für serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergehäuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/Schutzleiterschiene aufzulegen.
- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zum System 200V Modul weiter, legen Sie ihn dort jedoch nicht erneut auf!



#### Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen.

Abhilfe: Potenzialausgleichsleitung.

# **Allgemeine Daten**

#### Aufbau/Maße

- Profilschiene 35mm
- Peripherie-Module mit seitlich versenkbaren Beschriftungsstreifen
- Maße Grundgehäuse:

1fach breit: (HxBxT) in mm: 76x25,4x74 in Zoll: 3x1x3 2fach breit: (HxBxT) in mm: 76x50,8x74 in Zoll: 3x2x3

#### Betriebssicherheit

- Anschluss über Federzugklemmen an Frontstecker, Aderquerschnitt 0,08 ... 2,5mm² bzw. 1,5mm² (18-fach Stecker)
- Vollisolierung der Verdrahtung bei Modulwechsel
- Potenzialtrennung aller Module zum Rückwandbus
- ESD/Burst gemäß IEC 61000-4-2 / IEC 61000-4-4 (bis Stufe 3)
- Schockfestigkeit gemäß IEC 60068-2-6 / IEC 60068-2-27 (1G/12G)
- Schutzklasse IP20

# Umgebungsbedingungen

- Betriebstemperatur: 0 ... +60°C
- Lagertemperatur: -25 ... +70°C
- Relative Feuchte: 5 ... 95% ohne Betauung
- Lüfterloser Betrieb

# Teil 2 Hardwarebeschreibung

# Überblick

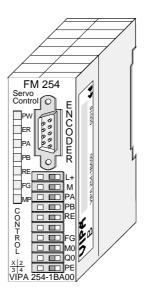
Hier wird näher auf die Hardware-Komponenten des FM 254-1BA00

eingegangen.

Die Technischen Daten finden Sie am Ende des Kapitels.

| Inhalt | Thema     |                      | Seite |
|--------|-----------|----------------------|-------|
|        | Teil 2 H  | łardwarebeschreibung | 2-1   |
|        | Leistungs | smerkmale            | 2-2   |
|        |           |                      |       |
|        | Technisc  | he Daten             | 2-7   |

# Leistungsmerkmale


**FM 254** 254-1BA00

Das FM 254 ist ein Positionier-Modul für die Ansteuerung eines Servo-Antriebs. Es ist einsetzbar für Punkt-zu-Punkt-Positionierungen und für komplexe Verfahrprofile mit höchsten Ansprüchen an Genauigkeit, Dynamik und Geschwindigkeit.

Das Modul arbeitet selbständig und wird über ein entsprechendes Anwenderprogramm in der CPU gesteuert.

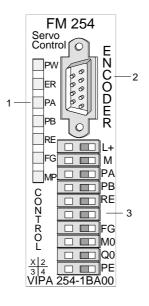
Folgende Eigenschaften zeichnen das Modul aus:

- Mikroprozessorgesteuertes Positionier-Modul für Antriebe mit analoger Sollwert-Schnittstelle (±10V Regleransteuerung)
- Verschiedene Betriebsarten
- Lagegeregeltes Positionieren
- Das Modul besitzt zum Anschluss von Endschaltern 3 Eingänge und kann 2 Ausgänge ansteuern.
  - Der Zustand der Ein-/Ausgänge wird zusätzlich auf LEDs ausgegeben.
- Spannungsversorgung DC 24V über Front und DC 5V über Rückwandbus





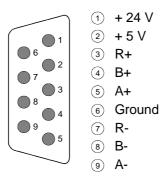
#### Hinweis!

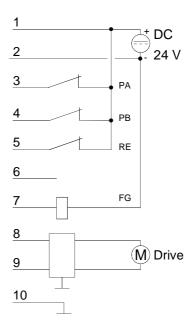

Die hier gemachten Angaben beziehen sich auf einen Firmwarestand ab 111. Die Firmwareversion finden Sie auf einem Aufkleber auf der Rückseite des Moduls.

#### **Bestelldaten**

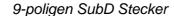
| Typ Bestellnummer |                | Beschreibung              |
|-------------------|----------------|---------------------------|
| FM 254            | VIPA 254-1BA00 | MotionControl-Modul Servo |

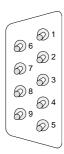
# **Aufbau**


## **Frontansicht**




- [1] LED Statusanzeigen
- [2] Anschluss für Drehgeber
- [3] Anschluss für Versorgungsspannung, Antrieb, Endschalter und Ausgänge

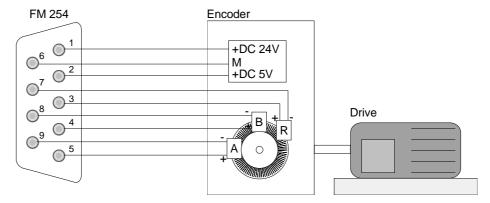

# **Schnittstellen**


### **ENCODER**





# **Encoder- Schnittstelle**






| Pin | Belegung                  |  |  |
|-----|---------------------------|--|--|
| 1   | Geberversorgung +24V      |  |  |
| 2   | Geberversorgung +5V       |  |  |
| 3   | R+ Takteingang Nullimpuls |  |  |
| 4   | B+ Takteingang            |  |  |
| 5   | A+ Takteingang            |  |  |
| 6   | Masse Geberversorgung     |  |  |
| 7   | R- Takteingang Nullimpuls |  |  |
| 8   | B- Takteingang            |  |  |
| 9   | A- Takteingang            |  |  |

Anschluss eines Drehgebers über Encoder-Schnittstelle Der Anschluss eines Drehgebers erfolgt über den 9-poligen SubD-Stecker. Das Modul liefert die DC 24V und DC 5V Spannungsversorgung für den Drehgeber.

Die nachfolgende Abbildung zeigt den Anschluss eines Drehgebers:





# Achtung!

Bitte beachten Sie, dass Sie ausschließlich Drehgeber mit 5V Signalpegel (RS422) anschließen dürfen!

### Control-Schnittstelle



| Pin | Belegung                   |
|-----|----------------------------|
| 1   | Versorgungsspannung DC 24V |
| 2   | Masse 24V                  |
| 3   | Eingang Anfangsschalter    |
|     | negierter Eingang          |
| 4   | Eingang Endschalter        |
|     | negierter Eingang          |
| 5   | Eingang Referenzschalter   |
|     | negierter Eingang          |
| 6   | reserviert                 |
| 7   | Ausgang Reglerfreigabe     |
| 8   | Analogausgang Masse        |
| 9   | Analogausgang +            |
| 10  | Schirm                     |

Anschluss von Versorgungsspannung, Antrieb, Endschalter und Ausgänge über Control-Schnittstelle

# 

### **Spannungsversorgung**

Über Pin 1 und 2 ist das Modul mit DC 24V zu versorgen.

#### **Endschalter**

An das Modul können Sie bis zu 3 Endschalter (Öffner) anschließen.

An Klemme 3 und 4 (PA und PB) schließen Sie die Schalter an, mit denen Sie die Strecke begrenzen. Sobald einer dieser Schalter betätigt wird, wird der Antrieb sofort angehalten und kann dann nur noch in die Gegenrichtung gefahren werden.

An Klemme 5 schließen Sie den Referenzschalter an, der für die Abstimmung Ihres Antriebs auf das MotionControl Servo Modul erforderlich ist.

Der Endschalter, der im Modus Hardware-Fahrt den Antrieb zum Stillstand bringt, ist auch an Klemme 5 anzuschließen.

#### Ausgänge

Das Modul besitzt 2 Ausgänge, die das Modul direkt ansteuert. Zur Zeit wird aber nur der Ausgang "Regler Freigabe" (Pin 7) angesteuert. Der andere Ausgang ist für zukünftige Erweiterungen. Die Freigabe aktivieren Sie durch Setzen von Bit 0 in den Fahr-Daten.

#### **Antrieb**

An Pin 8 und 9 wird ein Analogsignal geliefert, das zur ±10V Regleransteuerung eines Antriebs verwendet werden kann.

## **LEDs**

Das FM 254 besitzt LEDs, die der Statusanzeige dienen.

Die Verwendung und die jeweiligen Farben dieser LEDs finden Sie in der nachfolgenden Tabelle.

| LED | Farbe | Bedeutung                                                                     |
|-----|-------|-------------------------------------------------------------------------------|
| PW  | Grün  | DC 24V Versorgungsspannung liegt an                                           |
| ER  | Rot   | interner Fehler                                                               |
| PA  | Gelb  | Grenzwert A überfahren, Eingang PA gesetzt                                    |
| PB  | Gelb  | Grenzwert B überfahren, Eingang PB gesetzt                                    |
| RE  | Gelb  | Referenzpunkt überfahren                                                      |
| FG  | Gelb  | Freigabe des Antriebs                                                         |
| MP  | Gelb  | Blinkt bei anliegender Spannungsversorgung über Rückwandbus (Heartbeat - 2Hz) |



## Hinweis!

Sollte im Betrieb die PW-LED nicht leuchten, so könnte dies an einem Kurzschluss in der DC 24V-Spannungsversorgung liegen.

Überprüfen Sie hierzu auch die Anschlüsse des Encoder-Steckers.

# **Technische Daten**

MotionControl Servo Modul FM 254

| Artikelnummer                 | 254-1BA00          |
|-------------------------------|--------------------|
| Bezeichnung                   | FM 254             |
| Stromaufnahme/Verlustleistung |                    |
| Stromaufnahme aus Rückwandbus | 200 mA             |
| Verlustleistung               | 2,5 W              |
| Status, Alarm, Diagnosen      |                    |
| Statusanzeige                 | ja                 |
| Alarme                        | nein               |
| Prozessalarm                  | nein               |
| Diagnosealarm                 | nein               |
| Diagnosefunktion              | nein               |
| Diagnoseinformation auslesbar | keine              |
| Versorgungsspannungsanzeige   | ja                 |
| Sammelfehleranzeige           | rote LED           |
| Kanalfehleranzeige            | keine              |
| Datengrößen                   |                    |
| Eingangsbytes                 | 16                 |
| Ausgangsbytes                 | 16                 |
| Parameterbytes                | 18                 |
| Diagnosebytes                 | 0                  |
| Gehäuse                       |                    |
| Material                      | PPE / PA 6.6       |
| Befestigung                   | Profilschiene 35mm |
| Mechanische Daten             |                    |
| Abmessungen (BxHxT)           | 25,4 x 76 x 78 mm  |
| Gewicht                       | 130 g              |
| Umgebungsbedingungen          |                    |
| Betriebstemperatur            | 0 °C bis 60 °C     |
| Lagertemperatur               | -25 °C bis 70 °C   |
| Zertifizierungen              |                    |
| Zertifizierung nach UL508     | ja                 |

# Ergänzende Technische Daten

| Elektrische Daten                   | 254-1BA00                    |
|-------------------------------------|------------------------------|
| Spannungsversorgung                 | DC 24 V (20,4 28,8 V)        |
|                                     | über Front von ext. Netzteil |
| Stromaufnahme Control-Schnittstelle | 200 mA                       |
| Anschlüsse / Schnittstellen         |                              |
| Encoder                             | Inkrementalencoder           |
| Signalspannungen                    | 5 V nach RS 422              |
| Versorgungsspannung                 | 5,2 V / 300 mA               |
|                                     | 24 V / 300 mA                |
| Zählfrequenz                        | 200 000 Pulse/s              |
|                                     | = 50 000 Inkremente/s        |
| Control                             |                              |
| Abtastzeit                          | 2 ms                         |
| Sollwertausgang                     | -10 +10 V                    |
| Digitale Eingänge                   |                              |
| Anzahl                              | 3                            |
| Versorgungsspannung                 | DC 24 V                      |
| Digitale Ausgänge                   |                              |
| Anzahl                              | 1                            |
| Potentialtrennung                   | nein                         |
| Ausgangsstrom                       | 0,5 A                        |
| Lampenlast                          | 5 W                          |

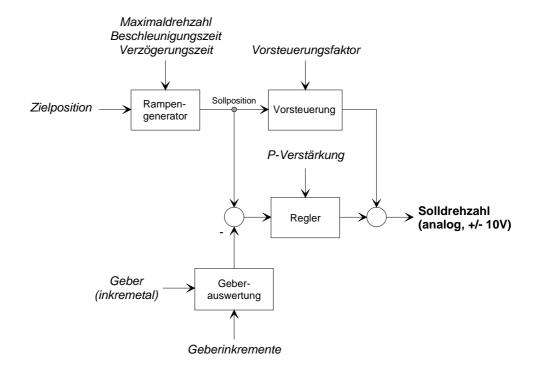
# Teil 3 Einsatz

# Überblick

In diesem Kapitel finden Sie Informationen über die Datenübertragung und die Betriebsarten des MotionControl Servo Moduls FM 254 für Servo-Antriebe.

| Inhalt | Thema                                     | Seite |
|--------|-------------------------------------------|-------|
|        | Teil 3 Einsatz                            | 3-1   |
|        | Übersicht der Parameter und Übergabewerte | 3-2   |
|        | Parametrierung                            | 3-3   |
|        | Datenübergabe CPU >> FM 254               |       |
|        | Betriebsarten                             | 3-6   |
|        | Datenübergabe FM 254 >> CPU               | 3-12  |

# Übersicht der Parameter und Übergabewerte


### Übersicht

In der nachfolgenden Tabelle sind alle Parameter und Übergabewerte aufgeführt.

| Wert                | Größe | Einheit    | physikalischer<br>Wertebereich |
|---------------------|-------|------------|--------------------------------|
| Zielposition        | 32Bit | 1          | 32 Bit Integer                 |
| Sollposition        |       |            |                                |
| Istposition         |       |            |                                |
| Maximaldrehzahl     | 16Bit | 1/min      | 100 6000 1/min                 |
| Beschleunigungszeit | 16Bit | 10ms       | 20ms 30s                       |
| Verzögerungszeit    |       |            |                                |
| P-Verstärkung       | 16Bit | 0,1        | 0,0 1000,0                     |
| Vorsteuerungsfaktor | 16Bit | 0,1        | 0,0 1,0                        |
| Geber-Strichzahl    | 16Bit | 1          | 10 10000                       |
| Betriebszustand     | 16Bit | bitcodiert |                                |

## **Blockdiagramm**

Das Zusammenspiel der Parameter ist im Blockdiagramm dargestellt.



# **Parametrierung**

# Parameterdaten (nur schreiben)

Bei der Inbetriebnahme sind zur Parametrierung des MotionControl Servo Moduls 16Byte Parameterdaten zu übergeben.

Die Parametrierdaten haben folgenden Aufbau:

| Byte-Nr. | Name                 | Länge | Wertebereich | Einheit |
|----------|----------------------|-------|--------------|---------|
| 1, 0     | Maximaldrehzahl      | 2Byte | 10 6000      | 1/min   |
| 3, 2     | reserviert           | 2Byte | -            | -       |
| 5, 4     | reserviert           | 2Byte | -            | -       |
| 7, 6     | P-Verstärkung        | 2Byte | 0,0 1000,0   | 0,1     |
| 9, 8     | Vorsteuerungsfaktor  | 2Byte | 0,0 1,0      | 0,1     |
| 11, 10   | Geberstrichzahl      | 2Byte | 10 10000     | 1       |
| 13, 12   | Referenzdrehzahl     | 2Byte | 1 6000       | 1/min   |
| 14       | Pos-erreicht-Fenster | 1Byte | 0 255        | 1INK    |
| 15       | Schleppabstand       | 1Byte | 01020        | 4INK    |

# Parameterbeschreibung

#### Maximaldrehzahl

Stellen Sie hier die Drehzahl ein, die Ihr Antrieb maximal annehmen soll.

Wenn das Produkt aus Maximaldrehzahl und Geberstrichzahl den Wert 3 000 000 übersteigt, wird die Maximaldrehzahl auf den Wert 3 000 000/Geberstrichzahl begrenzt.

#### P-Verstärkung, Vorsteuerungsfaktor

Über diese zwei Werte können Sie das Regelverhalten beeinflussen.

#### Geberstrichzahl

Mit diesem Parameter passen Sie Ihr MotionControl Servo Modul an den angeschlossenen Drehgeber an.

### Referenzdrehzahl

Diese Drehzahl wird für die Referenzfahrt verwendet, bei der sich das MotionControl Servo Modul neu auf die Regelstrecke einstellt.

Ist die Drehzahl im Eingangsbyte 6 und 7 kleiner als die Referenzdrehzahl, so wird als Referenzdrehzahl die Drehzahl aus Eingangsbyte 6 und 7 verwendet.

### Pos-erreicht-Fenster

Nach Erreichen der Zielposition wird der Antrieb durch fortlaufende Regelung in der Zielposition gehalten. Der Antrieb steht nicht still.

Mit dem *Pos-erreicht-Fenster* können Sie ein Bereichsfenster in Inkrementen angeben um den der Ist-Wert bei erreichter Position abweichen darf ohne dass eine Regelung stattfindet, der Antrieb also still steht.

#### Schleppabstand

Über diesen Parameter bestimmen Sie, ab welchem Schleppfehler, d.h. Differenz zwischen Ist- und Soll-Wert, der Antrieb gestoppt wird.

Bei einem Wert 0 wird die Schleppfehlerüberwachung abgeschaltet.

# Datenübergabe CPU >> FM 254

#### Fahr-Daten

Zur Ansteuerung des MotionControl Servo Moduls können folgende Werte von der CPU auf das Modul FM 254 geschrieben werden.

| Byte-Nr.       | Name                | Länge | Wertebereich   | Einheit         |
|----------------|---------------------|-------|----------------|-----------------|
| 3, 2, 1, 0     | Zielposition        | 4Byte | 32 Bit Integer | Geberinkremente |
| 5, 4           | Steuerungsbytes     | 2Byte |                |                 |
| 7, 6           | Drehzahl            | 2Byte | 1 6000         | 1/min           |
| 9, 8           | Beschleunigungszeit | 2Byte | 2 3000         | 10ms            |
| 13, 12 ,11, 10 | Parameterfeld       | 4Byte |                |                 |
| 15, 14         | Feldkennung         | 2Byte |                |                 |

### Steuerungsbytes (Byte 4 und Byte 5)

| Byte | Bit 7 0                                                                                               |
|------|-------------------------------------------------------------------------------------------------------|
| 4    | Bit 0: Freigabe                                                                                       |
|      | Bit 1: Betriebsart Referenzfahrt positiv                                                              |
|      | Bit 2: Betriebsart Referenzfahrt negativ                                                              |
|      | Bit 3: Betriebsart Hardware-Fahrt positiv                                                             |
|      | Bit 4: Betriebsart Hardware-Fahrt negativ                                                             |
|      | Bit 5: Betriebsart Kettenmaß                                                                          |
|      | Bit 6: Betriebsart Kettenmaß endlos                                                                   |
|      | Bit 7: Übernahme Zielposition                                                                         |
| 5    | Bit 0: Reset Counter nur bei Tipp-Betrieb (Flanke "0" nach "1" setzt die Istposition auf null zurück) |
|      | Bit 1: Tippbetrieb Drehrichtung positiv                                                               |
|      | Bit 2: Tippbetrieb Drehrichtung negativ                                                               |
|      | Bit 3: Stoppbit                                                                                       |
|      | Bit 7 4: reserviert                                                                                   |



#### Achtung!

Freigabebit: (Steuerungsbyte 4, Bit 0)

Wird das Freigabebit während der Fahrt zurückgesetzt, so wird bei digitalen und analogen Ausgängen des FM 254 der Wert "0" ausgegeben.

Nach wiederholtem Setzen des Freigabe-Bits (Byte 4, Bit 0) setzt das Modul den zuvor unterbrochenen Auftrag fort, falls kein neuer Auftrag vorliegt.

**Stoppbit:** (Steuerungsbyte 5, Bit 3)

Wird das Stoppbit während der Fahrt gesetzt, wird der Antrieb mit der eingestellten Verzögerungszeit angehalten. Sollte während des Verzögerns das Stoppbit zurückgesetzt werden, wird der Stoppauftrag gelöscht und der vorher definierte Auftrag ausgeführt.

Kommt der Antrieb aber zum Stillstand, so wird die Zielposition gleich der Istposition gesetzt und der Auftrag beendet.

Vor dem Löschen des Stoppbits sind Steuerbits (Byte 4 und 5) zu löschen, da sonst ein neuer Auftrag erteilt wird.



#### Hinweis!

Reset: (Steuerungsbyte 5, Bit 0)

Das Rücksetzen des Zählers darf nur im Tipp-Betrieb erfolgen. Im Positionierbetrieb würde der Regler aufgrund des gesprungen Istwertes Schleppfehler melden.

#### **Fahrdaten**

Parameterfeld und Feldkennungen (Byte 10 ... Byte 15)

Über die Angabe einer Feldkennung können Sie weitere Parameter zusammen mit den Fahrdaten an das FM 254 übergeben. Die Parameter für die entsprechende Feldkennung sind im Parameterfeld einzutragen (Byte 10...13).

Sofern keine Feldkennungen übertragen werden, arbeitet das FM 254 mit den angegebenen Default-Einstellungen.

| Feldkenng. | Bedeutung                | Wertebereich         | Einheit         | Default-Einstellung |
|------------|--------------------------|----------------------|-----------------|---------------------|
| FF01h      | Software-Endschalter (+) | 32 Bit Integer       | Geberinkremente | 7FFF.FFFF           |
| FF02h      | Software-Anfangssch. (-) | 32 Bit Integer       | Geberinkremente | 8000.0001           |
| FF03h      | Drehzahl Tippbetrieb     | 1 6000 <sup>1)</sup> | 1/min           | Referenzdrehzahl    |
| FF04h      | Verzögerungszeit         | 2 3000               | 10ms            | Beschleunigungszeit |

<sup>1)</sup> Ist die Drehzahl im Steuerungsbyte 6, 7 kleiner als die Drehzahl im Tippbetrieb, so wird als Tippdrehzahl die Drehzahl aus Steuerungsbyte 6, 7 verwendet.

#### Zählfrequenz

Wenn die Zählfrequenz länger als 1ms den Wert von 200 000 Pulse/s bzw. 50 000 Inkremente/s übersteigt, so wird der Antrieb angehalten.

Im Betriebszustandsbyte 11 wird Bit 3 für internen Fehler gesetzt.

Die LED "Interner Modulfehler" an der Front des Moduls leuchtet.

Durch Rücksetzen des Freigabe-Bits können Sie das "Interner Fehler-Bit" wieder löschen. Hierbei wird die Soll-Position gleich der Ist-Position gesetzt.

# Betriebsarten

#### Übersicht

Durch das Setzen entsprechender Bits in den Steuerungsbytes können Sie folgende Betriebsarten einstellen:

- Positionierbetrieb (Anfahrt einer absoluten Zielposition)
- Referenzfahrt (Kalibrierung des Antriebsystems)
- Hardwarefahrt (Fahrt bis Referenzschalter)
- Kettenmaß (Fahrt bei relativer Zielangabe durch Addition)
- Kettenmaß endlos (relative Fahrt ohne Zählerüberlauf)
- Tippbetrieb

#### **Positionierbetrieb**

#### **Funktion**

Im Positionierbetrieb wird die absolute Zielposition erst dann an das FM 254 übergeben, wenn das Bit "Übernahme Zielposition" sitzt.

Wird mit gesetztem Freigabebit eine neue Position vorgegeben, fährt der Antrieb mit den zuvor eingestellten Drehzahl- und Beschleunigungswerten selbständig an die gewünschte Position  $\pm$  Pos-erreicht-Fenster und setzt das "Position erreicht"-Bit. Nach der Übergabe der Fahrparameter starten Sie den Antrieb durch Setzen des Freigabe-Bits. Während der Fahrt zeigt das Modul durch Setzen von Bit 1 bzw. 2 im Betriebszustandsbyte 10 die Drehrichtung an.

Sobald die Abweichung zwischen Soll- und Ist-Position größer ist als das angegebene Schleppfehler-Fenster, wird die Positionierung abgebrochen und der Motor angehalten. Dies wird dem Programm durch Setzen des Schleppfehler-Bits Bit 0 im Betriebszustandsbyte 11 angezeigt. Durch Rücksetzen des Freigabe-Bits können Sie das Schleppfehler-Bit wieder löschen. Hierbei wird die Soll-Position gleich der Ist-Position gesetzt.

Der Antrieb stoppt auch, sobald Soft- bzw. Hardware-Schalter überfahren werden, die die Strecke begrenzen.

Durch Setzen des Freigabe-Bits können Sie die Fahrt jederzeit fortsetzen.

Die Beschleunigungs-/Verzögerungszeiten können vor Absetzen eines neuen Auftrags geändert werden.

Die Vorgabe einer neuen Drehzahl durch Änderung der Fahr-Daten ist immer möglich. Wird die Drehzahl während der Fahrt geändert, so wird anhand der aktuellen Beschleunigung/Verzögerung auf die neue Drehzahl geregelt.

#### **Steuerungsbytes**

Die Steuerungsbytes, mit denen Sie diese Betriebsart einstellen, sind Bestandteil der Fahrdaten.

| Byte | Bit 7 0                           |
|------|-----------------------------------|
| 4    | Bit 0: Freigabe (Antrieb startet) |
|      | Bit 6 1: 0                        |
|      | Bit 7: Übernahme Zielposition     |
| 5    | irrelevant                        |

#### Referenzfahrt

#### **Funktion**

Die Referenzfahrt dient der Kalibrierung Ihres Antriebsystems. Der Referenzpunkt sollte im Verfahrweg liegen.

#### Starten der Referenzfahrt:

- Setzen Sie das Freigabe-Bit.
- Geben Sie mit dem Bit "Referenzfahrt positiv" bzw. "Referenzfahrt negativ" die Referenzfahrt frei.
  - → Der Antrieb fährt nun mit der im Parametersatz eingestellten Referenzdrehzahl an den Referenzpunkt.
  - → Sobald der Referenzpunkt überfahren wird, wird der Referenz-Endschalter betätigt (LED RE geht aus).
  - → Die Position des Referenzpunkts wird gespeichert.
  - → Der Antrieb dreht nun zurück bis zum nächsten Gebernullimpuls.

Hiermit ist die Referenzfahrt beendet und es wird das Bit "Referenz erkannt" gesetzt.



#### Hinweis!

Bitte beachten Sie, dass in der Betriebsart "Referenzfahrt" die Angabe einer Sollposition nicht erforderlich ist. Die Sollposition wird ignoriert.

### **Steuerungsbytes**

Die Steuerungsbytes, mit denen Sie diese Betriebsart einstellen, sind Bestandteil der Fahrdaten.

| Byte | Bit 7 0                            |
|------|------------------------------------|
| 4    | Bit 0: Freigabe (Antrieb startet)  |
|      | Bit 2 1: 01: Referenzfahrt positiv |
|      | 10: Referenzfahrt negativ          |
|      | Bit 7 3: 0                         |
| 5    | irrelevant                         |

# Betriebsart Hardware-Fahrt

#### **Funktion**

Dieser Modus dient der reinen Zielfahrt, bis ein überfahrener Endschalter den Antrieb stoppt. Der Endschalter ist am Referenzschalter-Eingang anzuschließen.

Für die Fahrt werden die zuvor eingegebenen Drehzahl- und Beschleunigungs- bzw. Verzögerungswerte verwendet. Nach dem Erreichen des Endschalters wird der Antrieb mit der eingestellten Verzögerungszeit angehalten.

Die Beschleunigungs-/Verzögerungszeit kann vor Absetzen eines neuen Auftrags geändert werden.

Wird die Drehzahl während der Fahrt geändert, so wird anhand der aktuellen Beschleunigung/Verzögerung auf die neue Drehzahl geregelt.



#### Hinweis!

Bitte beachten Sie, dass in der Betriebsart "Hardware-Fahrt" die Angabe einer Sollposition nicht erforderlich ist. Die Sollposition wird ignoriert.

# **Steuerungsbytes**

Die Steuerungsbytes, mit denen Sie diese Betriebsart einstellen, sind Bestandteil der Fahrdaten.

| Byte | Bit 7 0                             |
|------|-------------------------------------|
| 4    | Bit 0: Freigabe (Antrieb startet)   |
|      | Bit 2 1: 0                          |
|      | Bit 4 3: 01: Hardware-Fahrt positiv |
|      | 10: Hardware-Fahrt negativ          |
|      | Bit 7 5: 0                          |
| 5    | irrelevant                          |

# Betriebsart Kettenmaß

#### **Funktion**

Im Modus Kettenmaß werden relative Positionen verarbeitet, d.h. der Wert, der als Sollposition übergeben wird, wird auf die aktuelle Position addiert.

Mit Setzen des Freigabe-Bits bewegt sich der Antrieb um den eingestellten relativen Wert in positive bzw. negative Richtung. Hierbei verwendet der Antrieb die zuvor eingestellten Drehzahl- und Beschleunigungswerte. Wird eine negative Position eingegeben, fährt der Antrieb rückwärts.

Die Beschleunigungs-/Verzögerungszeit können Sie vor Absetzen eines neuen Auftrags ändern.

Wird die Drehzahl während der Fahrt geändert, so wird anhand der aktuellen Beschleunigung/Verzögerung auf die neue Drehzahl geregelt.

### **Steuerungsbytes**

Die Steuerungsbytes, mit denen Sie diese Betriebsart einstellen, sind Bestandteil der Fahrdaten.

| Byte | Bit 7 0                           |
|------|-----------------------------------|
| 4    | Bit 0: Freigabe (Antrieb startet) |
|      | Bit 4 1: 0                        |
|      | Bit 5: 1 (Kettenmaß)              |
|      | Bit 7 6: 0                        |
| 5    | irrelevant                        |

# Betriebsart Kettenmaß endlos

#### **Funktion**

Hier wird nach der Freigabe der als Position übergebene Wert absolut angefahren, und nach Erreichen des Werts die Soll- und Istposition auf Null gesetzt. In diesem Modus können Sie den Antrieb ohne einen Zähler- überlauf in eine Richtung fahren.

Die Beschleunigungs-/Verzögerungszeit können Sie vor Absetzen eines neuen Auftrags ändern.

Die Vorgabe einer neuen Drehzahl ist immer möglich. Wird die Drehzahl während der Fahrt geändert, so wird anhand der aktuellen Beschleunigung/Verzögerung auf die neue Drehzahl geregelt.

## **Steuerungsbytes**

Die Steuerungsbytes, mit denen Sie diese Betriebsart einstellen, sind Bestandteil der Fahrdaten.

| Byte | Bit 7 0                           |
|------|-----------------------------------|
| 4    | Bit 0: Freigabe (Antrieb startet) |
|      | Bit 5 1: 0                        |
|      | Bit 6: 1 (Kettenmaß endlos)       |
|      | Bit 7: 0                          |
| 5    | irrelevant                        |

# Betriebsart Tipp-Betrieb

#### **Funktion**

Der Antrieb wird durch Setzten des Bit 0 in Byte 4 und zuvor eingestellter Drehzahl und Beschleunigung freigegeben. Durch Setzen von Bit 1 bzw. Bit 2 in Byte 5 wird eine Drehrichtung vorgegeben und der Antrieb startet. Der Antrieb stoppt sobald Bit 1 bzw. Bit 2 in Byte 5 zurückgesetzt wird.

### **Steuerungsbytes**

Die Steuerungsbytes, mit denen Sie diese Betriebsart einstellen, sind Bestandteil der Fahrdaten.

Eine allgemeine Beschreibung der Fahrdaten finden Sie weiter oben.

| Byte | Bit 7 0                                                                                       |
|------|-----------------------------------------------------------------------------------------------|
| 4    | Bit 0: Freigabe (Antrieb startet)                                                             |
| 5    | Bit 0: Reset Counter bei Tipp-Betrieb (Flanke 0 nach 1 setzt die Istposition auf Null zurück) |
|      | Bit 1: 1 Drehrichtung positiv                                                                 |
|      | Bit 2: 1 Drehrichtung negativ                                                                 |



#### Hinweis!

Das Rücksetzen des Zählers darf nur im Tipp-Betrieb erfolgen. Im Positionierbetrieb meldet der Regler aufgrund des gesprungen Istwertes Schleppfehler.

# Datenübergabe FM 254 >> CPU

Von dem MotionControl Servo Modul werden folgende Werte zyklisch an die CPU übergeben und dort abgelegt.

| Byte-Nr.   | Name                                | Länge | Wertebereich   | Einheit         |
|------------|-------------------------------------|-------|----------------|-----------------|
| 3, 2, 1, 0 | Sollposition                        | 4Byte | 32 Bit Integer | Geberinkremente |
| 7, 6, 5, 4 | Istposition                         | 4Byte | 32 Bit Integer | Geberinkremente |
| 9, 8       | Solldrehzahl                        | 2Byte | 16 Bit Integer | 1               |
|            | (Wert am Eingang des A/D Umsetzers) |       |                |                 |
| 11, 10     | Betriebszustand                     | 2Byte | bitcodiert     |                 |
| 13, 12     | reserviert                          | 2Byte | -              | -               |
| 15, 14     | Antwort Feldkennung                 | 2Byte |                | hex             |

#### Betriebszustand

| Byte | Bit 7 0                             |
|------|-------------------------------------|
| 10   | Bit 0: Freigabe erfolgt             |
|      | Bit 1: Rechtsdrehung                |
|      | Bit 2: Linksdrehung                 |
|      | Bit 3: Position erreicht            |
|      | Bit 4: HW-Anfangsschalter betätigt  |
|      | Bit 5: HW-Endschalter betätigt      |
|      | Bit 6: HW-Referenzschalter betätigt |
|      | Bit 7: Referenz erkannt             |
| 11   | Bit 0: Schleppfehler erkannt        |
|      | Bit 2 1: reserviert                 |
|      | Bit 3: Interner Fehler              |
|      | Bit 4: SW-Endschalter linksdrehend  |
|      | Bit 5: SW-Endschalter rechtsdrehend |
|      | Bit 6: Unzulässige Betriebsart      |
|      | Bit 7: reserviert                   |

## **Beispiel**

Ist z.B. das MotionControl Servo Modul in Ihrer CPU ab der Peripherie-Adresse PY128 abgelegt, so finden Sie die "Sollposition" ab PY128 bis PY131.

Die anderen Werte liegen gemäß der oberen Liste dahinter im Peripheriebereich.

Die 2Byte für den "Betriebszustand" beispielsweise befinden sich dann unter PY138 ... PY139.