VIPA System 200V

CPU | 215-2BT16 | Handbuch

HB97 | CPU | 215-2BT16 | DE | 16-17 CPU 215NET

VIPA GmbH Ohmstr. 4 91074 Herzogenaurach Telefon: +49 9132 744-0 Telefax: +49 9132 744-1864 E-Mail: info@vipa.com Internet: www.vipa.com

Inhaltsverzeichnis

1	Allgemeines	. 5
	1.1 Copyright © VIPA GmbH	. 5
	1.2 Über dieses Handbuch	. 6
	1.3 Sicherheitshinweise	. 7
2	Grundlagen und Montage	. 9
	2.1 Sicherheitshinweis für den Benutzer	. 9
	2.2 Systemvorstellung	10
	2.3 Abmessungen	12
	2.4 Montage	13
	2.5 Demontage und Modultausch	18
	2.6 Verdrahtung	19
	2.7 Aufbaurichtlinien	20
	2.8 Allgemeine Daten	23
3	Hardwarebeschreibung	26
	3.1 Leistungsmerkmale	26
	3.2 Aufbau	27
	3.2.1 Allgemein	27
	3.2.2 Schnittstellen	27
	3.2.3 Speichermanagement	28
	3.2.4 Steckplatz für Speichermedien	28
	3.2.5 Batteriepufferung für Uhr und RAM	29
	3.2.6 Betriebsartenschalter	29
	3.2.7 LEDs	30
	3.3 Technische Daten	31
4	Einsatz	37
	4.1 Montage	37
	4.2 Anlaufverhalten	37
	4.3 Adressierung	38
	4.4 Hinweise zum Einsatz der MPI-Schnittstelle	39
	4.5 Hardware-Konfiguration - CPU	40
	4.6 Hardware-Konfiguration - I/O-Module	42
	4.7 Hardware-Konfiguration - Ethernet-PG/OP-Kanal	43
	4.8 Einstellung CPU-Parameter	45
	4.8.1 Parameter CPU	45
	4.9 Projekt transferieren	47
	4.9.1 Transfer über MPI	48
	4.9.2 Transfer über Ethernet	50
	4.9.3 Transfer über MMC	51
	4.10 Betriebszustände	52
	4.11 Urlöschen	53
	4.12 Firmwareupdate	55
	4.13 Rucksetzen auf Werkseinstellung	5/
	4.14 Diagnose-Eintrage	58
_	4.15 IVILLI estiunktionen variabien steuern und beobachten	60
5	Einsatz Ethernet-Kommunikation	62
	5.1 Grundlagen - Industrial Ethernet in der Automatisierung.	62
	5.2 Grundlagen - ISO/OSI-Schichtenmodell	63

6

5.3 Grundlagen - Begriffe	. 64
5.4 Grundlagen - Protokolle	. 65
5.5 Grundlagen - IP-Adresse und Subnetz	. 67
5.6 Grundlagen - MAC-Adresse und TSAP	. 69
5.7 Schnelleinstieg	. 70
5.8 Inbetriebnahme und Urtaufe	. 71
5.9 Hardware-Konfiguration - CPU	. 72
5.10 Projektierung CP 243	. 73
5.11 Kommunikationsverbindungen projektieren	. 74
5.11.1 Übersicht	. 74
5.11.2 Siemens NetPro	. 75
5.11.3 Verbindungstyp - Send/Receive	. 80
5.12 NCM-Diagnose - Hilfe zur Fehlersuche	. 89
5.13 Kopplung mit Fremdsystemen	. 91
5.14 Beispiel zur Kommunikation CPU 215-2BT16	. 94
5.14.1 Beobachtung der Übertragung im Siemens SIMATIC	
Manager	. 99
Projektierung im TIA Portal	100
6.1 TIA Portal - Einschränkungen	100
6.2 TIA Portal - Arbeitsumgebung	100
6.2.1 Allgemein	100
6.2.2 Arbeitsumgebung des TIA Portals	101
6.3 TIA Portal - Hardware-Konfiguration - CPU	102
6.3.1 Virtuelles PROFIBUS-System	104
6.4 TIA Portal - Hardware-Konfiguration - I/O-Module	105
6.5 TIA Portal - Hardware-Konfiguration - Ethernet-PG/OP-	
Kanal	106
6.6 TIA Portal - Projekt transferieren	109

1 Allgemeines

1.1 Copyright © VIPA GmbH

in copyright o th	(Union		
All Rights Reserved	Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.		
	Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Mate- rials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch -extern) geän- dert werden, es sei denn in Übereinstimmung mit anwendbaren Ver- einbarungen, Verträgen oder Lizenzen.		
	Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: VIPA, Gesellschaft für Visualisierung und Prozessauto- matisierung mbH Ohmstraße 4, D-91074 Herzogenaurach, Germany		
	Tel.: +49 9132 744 -0		
	Fax.: +49 9132 744-1864		
	EMail: info@vipa.de		
	http://www.vipa.com		
	Es wurden alle Anstrengungen unternommen, um sicher- zustellen, dass die in diesem Dokument enthaltenen Infor- mationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informati- onen bleibt jedoch vorbehalten.		
	Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.		
EG-Konformitätserklä- rung	Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vor- schriften übereinstimmen. Die Übereinstimmung ist durch CE-Zei- chen gekennzeichnet.		
Informationen zur Kon- formitätserklärung	Für weitere Informationen zur CE-Kennzeichnung und Konformitäts- erklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH.		

VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.		
SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH.		
SIMATIC, STEP, SINEC, TIA Portal, S7-300 und S7-400 sind einge- tragene Warenzeichen der Siemens AG.		
Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.		
Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.		
Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzei- chen ihrer jeweiligen Eigentümer.		
Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:		
VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany		
Telefax: +49 9132 744-1204		
EMail: documentation@vipa.de		
Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:		
VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany		
Telefon: +49 9132 744-1150 (Hotline)		
EMail: support@vipa.de		

1.2 Über dieses Handbuch

Zielsetzung und Inhalt Das Handbuch beschreibt die CPU 215-2BT16 aus dem System 200V von VIPA. Beschrieben wird Aufbau, Projektierung und Anwendung.

Produkt	BestNr.	ab Stand:		
		CPU-HW	CPU-FW	CP-FW
CPU 215NET	215-2BT16	01	V 4.2.1	V 2.7.4.5

Zielgruppe	Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in der Automatisierungstechnik.
Aufbau des Handbuchs	Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.

Orientierung im Doku- ment	 Als Orientierungshilfe stehen im Handbuch zur Verfügung: Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs Verweise mit Seitenangabe 		
Verfügbarkeit	Das Handbuch ist verfügbar in:		
	 in elektronischer Form als PDF-Datei (Adobe Acrobat Reader) 		
Piktogramme Signal- wörter	Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausgezeichnet:		
	GEFAHR! Unmittelbar drohende oder mögliche Gefahr. Personen- schäden sind möglich.		
	VORSICHT! Bei Nichtbefolgen sind Sachschäden möglich.		
	O Zusätzliche Informationen und nützliche Tipps		

1.3 Sicherheitshinweise

Bestimmungsgemäße

Verwendung

Das System ist konstruiert und gefertigt für:

- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

GEFAHR!

Das Gerät ist nicht zugelassen für den Einsatz

in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

VORSICHT!

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

Entsorgung

Zur Entsorgung des Geräts nationale Vorschriften beachten!

2 Grundlagen und Montage

2.1 Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen. Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin. Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen. Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen. Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Baugruppen

Messen und Ändern von elektrostatisch gefährdeten Baugruppen Verwenden Sie für den Versand immer die Originalverpackung.

Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potenzialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

VORSICHT!

Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten. Systemvorstellung

2.2 Systemvorstellung

Übersicht

Das System 200V ist ein modular aufgebautes Automatisierungssystem für die Montage auf einer 35mm Profilschiene. Mittels der Peripherie-Module in 4-, 8- und 16-Kanalausführung können Sie dieses System passgenau an Ihre Automatisierungsaufgaben adaptieren.

Komponenten

Das System 200V besteht aus folgenden Komponenten:

- Kopfmodule wie CPU und Buskoppler
- Peripheriemodule wie I/O-, Funktions- und Kommunikationsmodule
- Netzteile
- Erweiterungsmodule

Kopfmodule

Beim Kopfmodul sind CPU bzw. Bus-Interface und DC 24V Spannungsversorgung in ein Gehäuse integriert. Über die integrierte Spannungsversorgung werden sowohl CPU bzw. Bus-Interface als auch die Elektronik der angebunden Peripheriemodule versorgt.

Peripherie-Module

Die einzelnen Module werden direkt auf eine 35mm-Profilschiene montiert und über Busverbinder, die vorher in die Profilschiene eingelegt werden, an das Kopfmodul gekoppelt. Die Peripheriemodule besitzen einen 10- bzw. 18poligen Steckverbinder mit seitlich versenkbaren Beschriftungsstreifen. Über diesen Steckverbinder werden Signal- und Versorgungsleitungen mit den Modulen verbunden.

Netzteile

Die DC 24V Spannungsversorgung kann im System 200V entweder extern oder über eigens hierfür entwickelte Netzteile erfolgen. Das Netzteil kann zusammen mit dem System 200V Modulen auf die Profilschiene montiert werden. Es besitzt keine Verbindung zum Rückwandbus

Die Erweiterungsmodule sind unter anderem Ergänzungs-Module für 2- oder 3-Draht Installation. Die Module haben keine Verbindung zum

Erweiterungsmodule

Aufbau/Maße

Rückwandbus

- Profilschiene 35mm
- Maße Grundgehäuse:
 - 1fach breit: (HxBxT) in mm: 76x25,4x74 in Zoll: 3x1x3
 - 2fach breit: (HxBxT) in mm: 76x50,8x74 in Zoll: 3x2x3

Grundlagen und Montage

Abmessungen

Montage

- Kopfmodul (doppelt breit) Kopfmodul (einfach breit) 1
- 2
- 3 Peripheriemodule
- 4 Führungsleisten

Bitte beachten Sie, dass Sie Kopfmodule nur auf Steckplatz 2 bzw. 1 und 2 (wenn doppelt breit) stecken dürfen.

Sie können maximal 32 Module stecken, hierbei ist zu beachten, dass der Summenstrom von 3,5A am Rückwandbus nicht überschritten wird! Bitte montieren Sie Module mit hoher Stromaufnahme direkt neben das Kopfmodul.

2.3 Abmessungen

Maße Grundgehäuse

Montagemaße

2fach breit (HxBxT) in mm: 76 x 50,8 x 74

Montage

Maße montiert und verdrahtet CPUs

hier mit VIPA EasyConn Stecker

2.4 Montage Allgemein

Die einzelnen Module werden direkt auf eine 35mm-Profilschiene montiert und über Rückwandbusverbinder verbunden. Vor der Montage ist der Rückwandbusverbinder in die Profilschiene einzulegen.

Profilschiene

Für die Montage können Sie folgende 35mm-Profilschienen verwenden:

Bestellnummer	Bezeichnung	Beschreibung
290-1AF00	35mm-Profilschiene	Länge 2000mm, Höhe 15mm
290-1AF30	35mm-Profilschiene	Länge 530mm, Höhe 15mm

Busverbinder

Für die Kommunikation der Module untereinander wird beim System 200V ein Rückwandbusverbinder eingesetzt. Die Rückwandbusverbinder sind isoliert und bei VIPA in 1-, 2-, 4- oder 8facher Breite erhältlich. Nachfolgend sehen Sie einen 1fach und einen 4fach Busverbinder:

Grundlagen und Montage

Montage

Der Busverbinder wird in die Profilschiene eingelegt, bis dieser sicher einrastet, so dass die Busanschlüsse aus der Profilschiene herausschauen.

Busverbinder

Bestellnummer	Bezeichnung	Beschreibung
290-0AA10	Busverbinder	1fach
290-0AA20	Busverbinder	2fach
290-0AA40	Busverbinder	4fach
290-0AA80	Busverbinder	8fach

Montage

- 1
- 2 3 Kopfmodul (einfach breit) Peripheriemodule
- 4 Führungsleisten

Das Bild zeigt einen 4fach-Busverbinder in einer Profilschiene und die Steckplätze für die Module. Die einzelnen Modulsteckplätze sind durch Führungsleisten abgegrenzt.

Montage unter Berücksichtigung der Stromaufnahme

- Verwenden Sie möglichst lange Busverbinder.
- Ordnen Sie Module mit hohem Stromverbrauch direkt rechts neben Ihrem Kopfmodul an. Im Service-Bereich von www.vipa.com finden Sie alle Stromaufnahmen des System 200V in einer Liste zusammengefasst.

Montage

Montagemöglichkeiten

Beachten Sie bitte die hierbei zulässigen Umgebungstemperaturen:

- waagrechter Aufbau: von 0 bis 60°C 1
- 2 senkrechter Aufbau: von 0 bis 40°C
- 3 liegender Aufbau: von 0 bis 40°C

Der waagrechte Aufbau beginnt immer links mit einem Kopfmodul. Rechts daneben sind die Peripherie-Module zu stecken. Es dürfen bis zu 32 Peripherie-Module gesteckt werden.

Bitte bei der Montage beachten!

- **1.** Schalten Sie die Stromversorgung aus, bevor Sie Module stecken bzw. abziehen!
- 2. Halten Sie ab der Mitte der Profilschiene nach oben einen Montageabstand von mindestens 80mm und nach unten von 60mm eiñ.
- Kopfmodul (doppelt breit) 1
- 2 Kopfmodul (einfach breit)
- 34 Peripheriemodule
- Führungsleisten
- 1. Eine Zeile wird immer von links nach rechts aufgebaut und beginnt immer mit einem Kopfmodul.
- Module müssen immer direkt nebeneinander gesteckt werden. 2. 🕨 Lücken sind nicht zulässig, da ansonsten der Rückwandbus unterbrochen ist.
- 3. Ein Modul ist erst dann gesteckt und elektrisch verbunden, wenn es hörbar einrastet.
- 4. Steckplätze rechts nach dem letzten Modul dürfen frei bleiben.

Am Rückwandbus dürfen sich maximal 32 Module befinden. Hierbei darf der Summenstrom von 3,5A darf nicht überschritten werden!

Montage Vorgehens-

weise

- **1.** Montieren Sie die Profilschiene. Bitte beachten Sie, dass Sie ab der Mitte der Profilschiene nach oben einen Modul-Montageabstand von mindestens 80mm und nach unten von 60mm einhalten.
- 2. Drücken Sie den Busverbinder in die Profilschiene, bis dieser sicher einrastet, so dass die Busanschlüsse aus der Profilschiene herausschauen. Sie haben nun die Grundlage zur Montage Ihrer Module.

- Kopfmodul (doppelt breit) 1
- 2 Kopfmodul (einfach breit)
- 3 Peripheriemodule
- 4 Führungsleisten
- Beginnen Sie ganz links mit dem Kopfmodul, wie CPU, PC oder 3. Buskoppler und stecken Sie rechts daneben Ihre Peripherie-Module.
- 4. Setzen Sie das zu steckende Modul von oben in einem Winkel von ca. 45 Grad auf die Profilschiene und drehen Sie das Modul nach unten, bis es hörbar auf der Profilschiene einrastet. Nur bei eingerasteten Modulen ist eine Verbindung zum Rückwandbus sichergestellt.

Clack

VORSICHT!

Module dürfen nur im spannungslosen Zustand gesteckt bzw. gezogen werden!

Demontage und Modultausch

2.5 Demontage und Modultausch

Demontage

- 1 2 3 4 5
- **1.** Entfernen Sie falls vorhanden die Verdrahtung an dem Modul, indem Sie die beiden Verriegelungshebel am Steckverbinder betätigen und den Steckverbinder abziehen.
 - 2. Zur Demontage des Moduls befindet sich am Gehäuseunterteil eine gefederter Demontageschlitz. Stecken Sie, wie gezeigt, einen Schraubendreher in den Demontageschlitz.
 - **3.** Entriegeln Sie durch Druck des Schraubendrehers nach oben das Modul.
 - 4. Ziehen Sie nun das Modul nach vorn
 - **5.** Ziehen Sie das Modul mit einer Drehung nach oben ab.

VORSICHT!

Module dürfen nur im spannungslosen Zustand gesteckt bzw. gezogen werden!

Bitte beachten Sie, dass durch die Demontage von Modulen der Rückwandbus an der entsprechenden Stelle unterbrochen wird!

2.6 Verdrahtung Übersicht

Die meisten Peripherie-Module besitzen einen 10poligen bzw. 18poligen Steckverbinder. Über diesen Steckverbinder werden Signal- und Versorgungsleitungen mit den Modulen verbunden. Bei der Verdrahtung werden Steckverbinder mit Federklemmtechnik eingesetzt. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen. Im Gegensatz zur Schraubverbindung, ist diese Verbindungsart erschütterungssicher. Die Steckerbelegung der Peripherie-Module finden Sie in der Beschreibung zu den Modulen. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² (bis 1,5mm² bei 18poligen Steckverbindern) anschließen. Die Abbildung zeigt ein Modul mit einem 10poligen Steckverbinder:

- 1 Entriegelungshebel
- 2 Pin-Nr. am Modul
- 3 Pin-Nr. am Steckverbinder
- 4 Anschluss für Draht
- 5 Öffnung für Schraubendreher

Die Federklemme wird zerstört, wenn Sie den Schraubendreher in die Öffnung für die Leitungen stecken! Drücken Sie den Schraubendreher nur in die rechteckigen Öffnungen des Steckverbinders! Aufbaurichtlinien

Verdrahtung Vorgehensweise

- Stecken Sie den Steckverbinder auf das Modul bis dieser hörbar einrastet. Drücken Sie hierzu während des Steckens, wie gezeigt, die beiden Verriegelungsklinken zusammen.
 - ⇒ Der Steckerverbinder ist nun in einer festen Position und kann leicht verdrahtet werden.
- **2.** Die nachfolgende Abfolge stellt die Schritte der Verdrahtung in der Draufsicht dar.

Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung.

- **3.** Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- 4. Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² (bei 18poligen Steckverbindern bis 1,5mm²) anschließen.
- **5.** Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit dem Steckverbinder verbunden.

Verdrahten Sie zuerst die Versorgungsleitungen (Spannungsversorgung) und dann die Signalleitungen (Ein- und Ausgänge)!

2.7 Aufbaurichtlinien

Allgemeines

Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau eines SPS-Systems. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV) sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist. Was bedeutet EMV? Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren, ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen. Die Komponenten von VIPA sind für den Einsatz in Industrieumgebungen entwickelt und erfüllen hohe Anforderungen an die EMV Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störguellen in die Betrachtung einbeziehen. Mögliche Störeinwir-Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden in Ihre Steuerung einkoppeln: kungen Elektromagnetische Felder (HF-Einkopplung) Magnetische Felder mit energietechnischer Freguenz **Bus-System** Stromversorgung Schutzleiter Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung. Man unterscheidet: galvanische Kopplung kapazitive Kopplung induktive Kopplung Strahlungskopplung Grundregeln zur Sicher-Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elestellung der EMV mentarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln. Achten sie bei der Montage Ihrer Komponenten auf eine gut aus-geführte flächenhafte Massung der inaktiven Metallteile. Stellen sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her. Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm. Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet. Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung. Teilen Sie die Verkabelung in Leitungsgruppen ein. (Stark-

- Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen).
- Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.
- Führen sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).

Aufbaurichtlinien

Ac	hten sie auf die einwandfreie Befestigung der Leitun	gsschirme.
-	Datenleitungen sind geschirmt zu verlegen.	

- Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
- Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
- Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
- Verwenden Sie f
 ür geschirmte Datenleitungen metallische oder metallisierte Steckergeh
 äuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
 - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
 - Beachten Sie, dass bei Einsatz von Leuchtstofflampen sich diese negativ auf Signalleitungen auswirken können.
- Schaffen Sie ein einheitliches Bezugspotenzial und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
 - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
 - Verbinden Sie Anlagenteile und Schränke mit Ihrer SPS sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
 - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

Schirmung von Leitungen Elektrische, magnetische oder elektromagnetische Störfelder werden durch eine Schirmung geschwächt; man spricht hier von einer Dämpfung. Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störquelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich. Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:
 - die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann.
 - Analogsignale (einige mV bzw. μA) übertragen werden.
 - Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen f
 ür serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergeh
 äuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/ Schutzleiterschiene aufzulegen.

- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zu Ihrer SPS weiter, legen Sie ihn dort jedoch nicht erneut auf!

VORSICHT! Bitte bei der

Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen.

Abhilfe: Potenzialausgleichsleitung.

2.8 Allgemeine Daten

Betriebssicherheit

- Anschluss über Federzugklemmen an Frontstecker, Aderquerschnitt 0,08 ... 2,5mm² bzw. 1,5mm² (18-fach Stecker)
- Vollisolierung der Verdrahtung bei Modulwechsel

Potenzialtrennung aller Module zum Rückwandbus

Allgemeine Daten

Konformität und Approbation				
Konformität				
CE	2014/35/EU	Niederspannungsrichtlinie		
	2014/30/EU	EMV-Richtlinie		
Approbation				
UL	UL 508	Zulassung für USA und Kanada		
Sonstiges				
RoHS	2011/65/EU	Produkte bleifrei; Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten		

Personenschutz und Geräteschutz				
Schutzart	-	IP20		
Potenzialtrennung				
Zum Feldbus	-	Galvanisch entkoppelt		
Zur Prozessebene - Galvanisch entkoppelt				
Isolationsfestigkeit -				
Isolationsspannung gegen Bezugserde				

Allgemeine Daten

Personenschutz und Geräteschutz				
Eingänge / Ausgänge	-	AC / DC 50V, bei Prüfspannung AC 500V		
Schutzmaßnahmen	-	gegen Kurzschluss		

Umgebungsbedingungen gemäß EN 61131-2					
Klimatisch					
Lagerung /Transport	EN 60068-2-14	-25+70°C			
Betrieb					
Horizontaler Einbau hängend	EN 61131-2	0+60°C			
Horizontaler Einbau liegend	EN 61131-2	0+40°C			
Vertikaler Einbau	EN 61131-2	0+40°C			
Luftfeuchtigkeit	EN 60068-2-30	RH1 (ohne Betauung, relative Feuchte 10 … 95%)			
Verschmutzung	EN 61131-2	Verschmutzungsgrad 2			
Aufstellhöhe max.	-	2000m			
Mechanisch					
Schwingung	EN 60068-2-6	1g, 9Hz 150Hz			
Schock	EN 60068-2-27	15g, 11ms			

Montagebedingungen		
Einbauort	-	Im Schaltschrank
Einbaulage	-	Horizontal hängend, horizontal liegend und vertikal

EMV	Norm		Bemerkungen
Störaussendung	EN 61000-6-4		Class A (Industriebereich)
Störfestigkeit	EN 61000-6-2		Industriebereich
Zone B		EN 61000-4-2	ESD 8kV bei Luftentladung (Schärfegrad 3), 4kV bei Kontaktentladung (Schärfegrad 2)
		EN 61000-4-3	HF-Einstrahlung (Gehäuse) 80MHz 1000MHz, 10V/m, 80% AM (1kHz) 1,4GHz 2,0GHz, 3V/m, 80% AM (1kHz) 2GHz 2,7GHz, 1V/m, 80% AM (1kHz)
		EN 61000-4-6	HF-Leitungsgeführt 150kHz … 80MHz, 10V, 80% AM (1kHz)
	EN 61000-4-4	Burst, Schärfegrad 3	

Allgemeine Daten

EMV	Norm		Bemerkungen	
		EN 61000-4-5	Surge, Installationsklasse 3 *	
*) Aufgrund der energiereichen Einzelimpulse ist bei Surge eine angemessene externe Beschaltung mit Blitzschutzelementen wie z.B. Blitzstro-				

mableitern und Überspannungsableitern erforderlich.

3 Hardwarebeschreibung

3.1 Leistungsmerkmale

CPU 215-2BT16

- Befehlskompatibel zu STEP[®]7 von Siemens
- Projektierung über den Siemens SIMATIC Manager oder das TIA Portal
- Integrierter V-Bus-Kontroller zur Steuerung der System 200V Peripherie-Module
- Integriertes 24V-Netzteil
- Gesamtadressraum: 1024 Byte Eingänge, 1024 Byte Ausgänge (je 128 Byte Prozessabbild)
- 128kByte Arbeitsspeicher "on board"
- 192kByte Ladespeicher "on board"
- Steckplatz für MMC (für Anwenderprogramm)
- Akkugepufferte Uhr
- MP²I-Schnittstelle zur Datenübertragung
- Status-LEDs f
 ür Betriebszustand und Diagnose
- Integriertem Ethernet-CP 243 (kompatibel zum CP 343)
 - Direkter Anschluss an Twisted-Pair-Ethernet über RJ45
 - CP projektierbar mit NetPro von Siemens
 - Protokolle: TCP/IP, UDP und RFC1006
 - Übertragungsrate 10/100MBit/s
 - PG/OP-Kanal

Bestelldaten

Тур	Bestellnummer	Beschreibung
CPU 215NET	215-2BT16	CPU mit Ethernet-PG/OP-Kanal und 128/192kByte Arbeits-/Lade-Speicher

Aufbau > Schnittstellen

3.2 Aufbau

3.2.1 Allgemein

CPU 215-2BT16

- Betriebsarten-Schalter
- 2 LEDs der CPU
- 3 Steckplatz für MMC-Speicherkarte
- 4 MP²I-Schnittstelle
- 5 Anschluss für DC 24V Spannungsversorgung
- 6 LEDs des CP 243 bzw. Ethernet-PG/OP-Kanals
- 7 Ethernet-Schnittstelle für CP 243 bzw. Ethernet-PG/OP-Kanal

3.2.2 Schnittstellen

X1

Spannungsversorgung

Die CPU besitzt ein eingebautes Netzteil. Der Anschluss erfolgt über zwei Anschlussklemmen an der Frontseite.

- Das Netzteil ist mit DC 24V (20,4 ... 28,8V) zu versorgen. Über die Versorgungsspannung werden neben der CPU-Elektronik auch die angeschlossenen Module über den Rückwandbus versorgt.
- Die CPU-Elektronik ist nicht galvanisch von der Versorgungsspannung getrennt. Das Netzteil ist gegen Verpolung und Überstrom geschützt.

Bitte achten Sie auf richtige Polarität bei der Spannungsversorgung. Aufbau > Steckplatz für Speichermedien

MP ² I-Schnittstelle	 Die MPI-Schnittstelle dient zur Datenübertragung zwischen CPUs und PCs. In einer Buskommunikation können Sie Programme und Daten zwischen den CPUs transferieren, die über MPI verbunden sind. Zur seriellen Übertragung von Ihrem PC aus ist ein MPI-Umsetzer erforderlich. Sie können aber auch von VIPA das "Green Cable" BestNr.: 950-0KB00 beziehen. Hiermit können Sie nur bei Systemkomponenten von VIPA als Punkt-zu-Punkt-Verbindung seriell über die MPI-Schnittstelle Ihre Daten übertragen. Bitte beachten Sie die & <i>"Hinweise zum Einsatz der MPI-Schnittstelle" auf Seite 39.</i>
Ethernet-Schnittstelle	 8polige RJ45-Buchse: Mit dem CP 243 steht Ihnen ein Kommunikations-Prozessor zur Verfügung PG/OP-Kanäle (je 1 Verbindung ist für PG und PG/OP reserviert)
	Anzahl der Verbindungen & "Technische Daten" auf Seite 31.

Die Projektierung erfolgt als CP343-1EX11. Über die RJ45-Buchse können Sie den CP 243 an Twisted-Pair-Ethernet anbinden.

3.2.3 Speichermanagement

Speicher

Die CPU 215-2BT16 hat einen Arbeitsspeicher und einen Ladespeicher integriert. Die Speicher sind batterie-gepuffert.

- 192kByte Ladespeicher
- 128kByte Arbeitsspeicher

3.2.4 Steckplatz für Speichermedien

- Über diesen Steckplatz können Sie eine MMC (Multimedia Card) von VIPA (Best.-Nr.: 953-0KX10) als externes Speichermedium für Programme und Firmware stecken.
- Die VIPA-Speicherkarten sind mit dem PC-Format FAT vorformatiert und können mit einem Kartenlesegerät beschrieben werden.
- Nach PowerON bzw. nach Urlöschen überprüft die CPU, ob eine Speicherkarte gesteckt ist und sich hier für die CPU gültige Daten befinden.
- Schieben Sie ihr Speichermedium in den Steckplatz, bis dieses geführt durch eine Federmechanik einrastet. Dies gewährleistet eine sichere Kontaktierung.

3.2.5 Batteriepufferung für Uhr und RAM

Die CPU 215-2BT16 besitzt einen internen Akku, der zur Sicherung des RAMs bei Stromausfall dient. Zusätzlich wird die interne Uhr über den Akku gepuffert. Der Akku wird direkt über die eingebaute Spannungsversorgung über eine Ladeelektronik geladen und gewährleistet eine Pufferung für max. 30 Tage.

VORSICHT!

- Nach längerer Lagerung könnte der Puffer Akku stark entladen sein. Bitte schließen Sie zur Erreichung der vollen Pufferkapazität die CPU mindestens für 24 Stunden an die Spannungsversorgung an.
- Bei leerem Akku läuft die CPU nach einem Spannungsreset mit einem BAT-Fehler an und führt ein automatisches Urlöschen der CPU durch, da der RAM-Inhalt bei leerem Akku undefiniert ist.

3.2.6 Betriebsartenschalter

- Mit dem Betriebsartenschalter können Sie bei der CPU zwischen den Betriebsarten STOP und RUN wählen.
- Beim Übergang vom Betriebszustand STOP nach RUN durchläuft die CPU den Betriebszustand ANLAUF.
- Mit der Tasterstellung MR (Memory Reset) fordern Sie das Urlöschen an mit anschließendem Laden von der Speicherkarte, sofern dort ein Projekt hinterlegt ist.

Aufbau > LEDs

3.2.7 LEDs

LEDs CPU

Sobald die CPU intern mit 5V versorgt wird, leuchtet die grüne PW-LED (Power).

R	S	SF	FC	MC	Bedeutung
(RUN)	(STOP)	(SFAIL)	(FRCE)	(MMC)	
grün	gelb	rot	gelb	gelb	
0	•	Х	Х	Х	CPU befindet sich im Zustand STOP.
В	0	Х	Х	Х	CPU befindet sich im Zustand Anlauf. Solange der OB100 durchlaufen wird, blinkt die RUN-LED mindestens für 3s.
•	0	0	Х	Х	CPU befindet sich ohne Fehler im Zustand RUN.
Х	Х	•	Х	Х	Es liegt ein Systemfehler vor. Nähere Informationen hierzu finden Sie im Diagnosepuffer der CPU.
Х	Х	Х	•	Х	Variablen sind geforced (fixiert).
Х	Х	Х	Х	В	Zugriff auf Speicherkarte.
Urlöschen					
0	В	Х	Х	Х	Urlöschen wird durchgeführt.
0	•	Х	Х	Х	Urlöschen ist abgeschlossen.
Rücksetz	en auf We	erkseinstelli	ung		
•	•	0	0	0	Rücksetzen auf Werkseinstellung wird durchgeführt.
0	•	0	0	0	Rücksetzen auf Werkseinstellung war erfolgreich.
Firmwareupdate					
0	0	В	В	•	Das abwechselnde Blinken zeigt an, dass ein Firmwa- reupdate durchgeführt wird.
0	•	•	•	•	Firmwareupdate wurde fehlerfrei durchgeführt.
0	В	В	В	В	Blinken: Fehler bei Firmwareupdate.
	an: • Laus: • Lhinkend: B Lnicht relevant: X				

an: \bullet | aus: \circ | blinkend: B | nicht relevant: X LEDs CP 243 Zusätzlich besitzt die CPU weitere LEDs, welche die Kommunikation des CPs anzeigen. Die LEDs befinden sich auf der Front der linken Gehäusehälfte.

Name	Farbe	Bedeutung	
RN grün (RUN)	grün	•	CP-Projekt ist geladen
	0	CP ist urgelöscht (kein Projekt)	
ST	gelb	•	CP ist urgelöscht
(STOP)		0	CP-Projekt ist geladen
IF (Interner Fehler)	rot	•	Interner CP-Fehler
L/A	grün	•	Physikalisch mit Ethernet verbunden
(Link/Activity)		0	Keine physikalische Ethernet-Verbindung
		В	Unregelmäßiges Blinken: Ethernet-Aktivität
S (Speed)	grün	•	Übertragungsrate: 100MBit/s
		0	Übertragungsrate: 10MBit/s
an: • aus: • b	olinkend: B		

Artikelnr.	215-2BT16
Bezeichnung	CPU 215NET
Technische Daten Stromversorgung	
Versorgungsspannung (Nennwert)	DC 24 V
Versorgungsspannung (zulässiger Bereich)	DC 20,428,8 V
Verpolschutz	\checkmark
Stromaufnahme (im Leerlauf)	140 mA
Stromaufnahme (Nennwert)	1,5 A
Einschaltstrom	65 A
l²t	0,75 A²s
max. Stromabgabe am Rückwandbus	3 A
max. Stromabgabe Lastversorgung	-
Verlustleistung	6 W
Lade- und Arbeitsspeicher	
Ladespeicher integriert	192 KB
Ladespeicher maximal	192 KB

Hardwarebeschreibung

Artikelnr.	215-2BT16
Arbeitsspeicher integriert	128 KB
Arbeitsspeicher maximal	128 KB
Speicher geteilt 50% Code / 50% Daten	-
Memory Card Slot	MMC-Card mit max. 512 MB
Ausbau	
Baugruppenträger max.	4
Baugruppen je Baugruppenträger	in Summe max. 32
Anzahl DP-Master integriert	-
Anzahl DP-Master über CP	8
Betreibbare Funktionsbaugruppen	32
Betreibbare Kommunikationsbaugruppen PtP	32
Betreibbare Kommunikationsbaugruppen LAN	-
Befehlsbearbeitungszeiten	
Bitoperation, min.	0,18 µs
Wortoperation, min.	0,78 µs
Festpunktarithmetik, min.	1,8 µs
Gleitpunktarithmetik, min.	40 µs
Zeiten/Zähler und deren Remanenz	
Anzahl S7-Zähler	256
S7-Zähler Remanenz	einstellbar von 0 bis 255
S7-Zähler Remanenz voreingestellt	Z0 Z7
Anzahl S7-Zeiten	256
S7-Zeiten Remanenz	einstellbar von 0 bis 255
S7-Zeiten Remanenz voreingestellt	keine Remanenz
Datenbereiche und Remanenz	
Anzahl Merker	8192 Bit
Merker Remanenz einstellbar	einstellbar von 0 bis 1023
Merker Remanenz voreingestellt	MB0 MB15
Anzahl Datenbausteine	2047
max. Datenbausteingröße	16 KB
Nummernband DBs	1 2047
max. Lokaldatengröße je Ablaufebene	1024 Byte
max. Lokaldatengröße je Baustein	1024 Byte
Bausteine	
Anzahl OBs	14
maximale OB-Größe	16 KB

Artikelnr.	215-2BT16
Gesamtanzahl DBs, FBs, FCs	-
Anzahl FBs	1024
maximale FB-Größe	16 KB
Nummernband FBs	0 1023
Anzahl FCs	1024
maximale FC-Größe	16 KB
Nummernband FCs	0 1023
maximale Schachtelungstiefe je Prioklasse	8
maximale Schachtelungstiefe zusätzlich inner- halb Fehler OB	1
Uhrzeit	
Uhr gepuffert	\checkmark
Uhr Pufferungsdauer (min.)	30 d
Art der Pufferung	Vanadium Rechargeable Lithium Batterie
Ladezeit für 50% Pufferungsdauer	20 h
Ladezeit für 100% Pufferungsdauer	48 h
Genauigkeit (max. Abweichung je Tag)	10 s
Anzahl Betriebsstundenzähler	8
Uhrzeit Synchronisation	-
Synchronisation über MPI	-
Synchronisation über Ethernet (NTP)	-
Adressbereiche (Ein-/Ausgänge)	
Peripherieadressbereich Eingänge	1024 Byte
Peripherieadressbereich Ausgänge	1024 Byte
Prozessabbild einstellbar	-
Prozessabbild Eingänge voreingestellt	128 Byte
Prozessabbild Ausgänge voreingestellt	128 Byte
Prozessabbild Eingänge maximal	128 Byte
Prozessabbild Ausgänge maximal	128 Byte
Digitale Eingänge	8192
Digitale Ausgänge	8192
Digitale Eingänge zentral	512
Digitale Ausgänge zentral	512
Integrierte digitale Eingänge	-
Integrierte digitale Ausgänge	-
Analoge Eingänge	512

Hardwarebeschreibung

Artikelnr.	215-2BT16
Analoge Ausgänge	512
Analoge Eingänge zentral	128
Analoge Ausgänge zentral	128
Integrierte analoge Eingänge	-
Integrierte analoge Ausgänge	-
Kommunikationsfunktionen	
PG/OP Kommunikation	\checkmark
Globale Datenkommunikation	\checkmark
Anzahl GD-Kreise max.	4
Größe GD-Pakete, max.	22 Byte
S7-Basis-Kommunikation	\checkmark
S7-Basis-Kommunikation Nutzdaten je Auftrag	76 Byte
S7-Kommunikation	\checkmark
S7-Kommunikation als Server	\checkmark
S7-Kommunikation als Client	-
S7-Kommunikation Nutzdaten je Auftrag	160 Byte
Anzahl Verbindungen gesamt	16
Funktionalität Sub-D Schnittstellen	
Bezeichnung	MP ² I
Physik	RS485
Anschluss	9polige SubD Buchse
Potenzialgetrennt	-
MPI	\checkmark
MP ² I (MPI/RS232)	\checkmark
Punkt-zu-Punkt-Kopplung	-
5V DC Spannungsversorgung	max. 90mA, potentialgebunden
24V DC Spannungsversorgung	max. 100mA, potentialgebunden
Funktionalität MPI	
Anzahl Verbindungen, max.	16
PG/OP Kommunikation	✓
Routing	-
Globale Datenkommunikation	✓
S7-Basis-Kommunikation	\checkmark
S7-Kommunikation	\checkmark
S7-Kommunikation als Server	\checkmark
S7-Kommunikation als Client	-

Artikelnr.	215-2BT16
Übertragungsgeschwindigkeit, min.	19,2 kbit/s
Übertragungsgeschwindigkeit, max.	187,5 kbit/s
Funktionalität RJ45 Schnittstellen	
Bezeichnung	ТР
Physik	Ethernet 10/100 MBit
Anschluss	RJ45
Potenzialgetrennt	\checkmark
PG/OP Kommunikation	\checkmark
max. Anzahl Verbindungen	8
Produktiv Verbindungen	\checkmark
Ethernet Kommunikations CP	
Anzahl projektierbarer Verbindungen, max.	16
Anzahl via NetPro projektierbarer Verbin- dungen, max.	16
S7-Verbindungen	-
Nutzdaten je S7-Verbindung, max.	-
TCP-Verbindungen	SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv
Nutzdaten je TCP-Verbindung, max.	64 KB
ISO-Verbindungen	SEND und RECEIVE
Nutzdaten je ISO-Verbindung, max.	8 KB
ISO on TCP Verbindungen (RFC 1006)	SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv
Nutzdaten je ISO on TCP-Verbindung, max.	32 KB
UDP-Verbindungen	SEND und RECEIVE
Nutzdaten je UDP-Verbindung, max.	2 KB
UDP-Multicast-Verbindungen	SEND und RECEIVE (max. 16 Multicast Kreise)
UDP-Broadcast-Verbindungen	SEND
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	0
Parameterbytes	3
Diagnosebytes	0
Gehäuse	
Material	PPE / PA 6.6
Befestigung	Profilschiene 35mm
Mechanische Daten	

Hardwarebeschreibung

Artikelnr.	215-2BT16
Abmessungen (BxHxT)	50,8 mm x 76 mm x 80 mm
Gewicht	150 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	in Vorbereitung
Zertifizierung nach KC	-
4 Einsatz

4.1 Montage

4.2 Anlaufverhalten

Stromversorgung einschalten

Im Auslieferungszustand ist die CPU urgelöscht. Nach dem Einschalten der Stromversorgung geht die CPU in den Betriebszustand über, der am Betriebsartenschalter eingestellt ist. Nach einem STOP \rightarrow RUN Übergang geht die CPU ohne Programm in RUN.

Nach längerer Lagerung könnte der Puffer Akku stark entladen sein. Bitte schließen Sie zur Erreichung der vollen Pufferkapazität die CPU mindestens für 24 Stunden an die Spannungsversorgung an.

Anlauf mit gültigen Daten in der CPU

Anlauf bei leerem Akku

- Die CPU geht mit dem Programm, das sich im batteriegepufferten RAM befindet, in RUN.
- Der Akku wird direkt über die eingebaute Spannungsversorgung über eine Ladeelektronik geladen und gewährleistet eine Pufferung für min. 30 Tage. Wird dieser Zeitraum überschritten, kann es zur vollkommenen Entladung des Akkus kommen. Hierbei wird das batteriegepufferte RAM gelöscht.
 - In diesem Zustand führt die CPU ein Urlöschen durch, da der RAM-Inhalt bei leerem Akku undefiniert ist. Ist eine MMC mit einem S7PROG.WLD gesteckt, werden Programmcode und Datenbausteine von der MMC in den Arbeitsspeicher der CPU übertragen.
 - Ist keine MMC gesteckt, wird das Projekt aus dem internen Flash geladen.
 - Abhängig von der Stellung des Betriebsartenschalters bleibt die CPU im STOP bzw. geht in RUN. Aufgrund des Batteriefehlers kann die CPU nur anlaufen, sofern ein OB 81 projektiert wurde. Ansonsten ist ein manueller Neustart (STOP/RUN) bzw. PG-Kommando erforderlich.
 - Bei einem Anlauf bei leerem Akku leuchtet die SF-LED und weist somit auf einen Eintrag im Diagnosepuffer hin. *Sinder Diagnose-Einträge" auf Seite 58*

VORSICHT! Bei leerem Akku läuft die CPU nach einem Spannungsreset mit einem BAT-Fehler an und führt ein automatisches Urlöschen der CPU durch.

4.3 Adressierung

Automatische Adressierung Damit die gesteckten Peripheriemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden. Bei der CPU gibt es einen Peripheriebereich (Adresse 0 ... 1023) und ein Prozessabbild der Ein- und Ausgänge (je Adresse 0 ... 127). Beim Hochlauf der CPU vergibt diese automatisch von 0 an aufsteigend Peripherieadressen für digitale Ein-/Ausgabe-Module. Sofern keine Hardwareprojektierung vorliegt, werden Analog-Module bei der automatischen Adressierung auf gerade Adressen ab Adresse 128 abgelegt.

Signalzustände in Prozessabbild

Die Signalzustände der unteren Adresse (0 ... 127) werden zusätzlich in einem besonderen Speicherbereich, dem *Prozessabbild* gespeichert.

Das Prozessabbild ist in zwei Teile gegliedert:

- Prozessabbild der Eingänge (PAE)
- Prozessabbild der Ausgänge (PAA)

Nach jedem Zyklusdurchlauf wird das Prozessabbild automatisch aktualisiert.

Lese- und Schreibzu- griffe	Über Les Prozessa	e- bzw. Schreibzugriffe auf die Peripheriebytes oder auf das abbild können Sie die Module ansprechen.
		Bitte beachten Sie, dass durch den lesenden und schreib- enden Zugriff auf dieselbe Adresse <u>unterschiedliche</u> Module angesprochen werden können.
		Digitale und analoge Module haben bei der automatischen Adressierung getrennte Adressbereiche.
		 Digitalmodule: 0 127 Analogmodule: 128 1023

Beispiel zur automati-

schen Adresszuordnochmals verdeutlichen: nung Steckplatz: 1 2 3 4 5 DO 8xDC24V DIO 8xDC24V 16xDC24V DI 8xDC24V AO 4x12Bit AI 4x12Bit CPU 21x Ē PAE PAA rel. Adr. Peripheriebereich Peripheriebereich rel. Adr 0 0 Eingangs-Byte 0 Ausgangs-Byte 0 1 Eingangs-Byte 1 Ausgangs-Byte 1 1 2 2 Eingangs-Byte 2 Ausgangs-Byte 2 3 3 Eingangs-Byte 3 Ausgangs-Byte 3 Eingangs-Byte 127 127 127 Ausgangs-Byte 127 digital digital analog analog Eingangs-Byte 0 128 128 Ausgangs-Byte 0 . 135 135 Eingangs-Byte 7 Ausgangs-Byte 7 136 136 Eingangs-Byte 8 Ausgangs-Byte 8 137 137 Eingangs-Byte 9 Ausgangs-Byte 9 1023 Eingangs-Byte 1023 Ausgangs-Byte 1023 1023

Adresszuordnung durch Projektierung ändern

Sie können jederzeit durch Einsatz des Siemens SIMATIC Managers die Adresszuordnung ändern. Somit können Sie auch Analogmodule in den Prozessabbildbereich (0 ... 127) legen und Digitalmodule oberhalb von 127. Die Vorbereitung für die Projektierung und die Vorgehensweise bei der Projektierung sind auf den Folgeseiten beschrieben.

Die nachfolgende Abbildung soll die automatische Adresszuordnung

4.4 Hinweise zum Einsatz der MPI-Schnittstelle

Was ist MP²I? Die MP²I-Schnittstelle hat 2 Schnittstellen in einer Schnittstelle vereint:

- MPI-Schnittstelle
- RS232-Schnittstelle

Bitte beachten Sie, dass die MP²I-Schnittstelle nur bei Einsatz des Green Cable von VIPA als RS232-Schnittstelle benutzt werden kann.

Einsatz als MPI-Schnittstelle Die MPI-Schnittstelle dient zur Datenübertragung zwischen CPUs und PCs. In einer Buskommunikation können Sie Daten zwischen den CPUs transferieren, die über MPI verbunden sind. Bei Anschluss eines handelsüblichen MPI-Kabels bietet die MPI-Buchse die volle MPI-Funktionalität. Hardware-Konfiguration - CPU

VORSICHT!

Wichtige Hinweise zum Einsatz von MPI-Kabeln

Bei Einsatz eines MPI-Kabels an den CPUs von VIPA ist darauf zu achten, dass der Pin 1 nicht verbunden ist. Dies kann zu Transferproblemen führen und ggf. an der CPU einen Defekt herbeiführen! Insbesondere PROFIBUS-Kabel von Siemens wie beispielsweise das Kabel mit der Best.-Nr. 6XV1 830-1CH30 darf an der MP²I-Buchse nicht betrieben werden. Für Schäden, die aufgrund der Nichtbeachtung dieser Hinweise und bei unsachgemäßem Einsatz entstehen, übernimmt die VIPA keinerlei Haftung!

Einsatz als RS232-Schnittstelle nur über "Green Cable"

Zur seriellen Übertragung von Ihrem PC aus ist ein MPI-Umsetzer erforderlich. Sie können aber auch das "Green Cable" von VIPA verwenden. Sie erhalten es unter der Best.-Nr. VIPA 950-0KB00.

Hiermit können Sie Ihre Daten, ausschließlich bei VIPA CPUs mit MP²I-Buchse, als Punkt-zu-Punkt-Verbindung seriell über die MP²I-Buchse übertragen.

4.5 Hardware-Konfiguration - CPU

Übersicht	Zur Projektierung der CPU 215-2BT16 und der am VIPA-Bus neben der CPU befindlichen System 200V Module verwenden Sie den Hard- ware-Konfigurator von Siemens. Damit die direkt gesteckten Periphe- riemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden. Die Adresszu- ordnung und die Parametrierung der Module erfolgt im Siemens SIMATIC Manager in Form eines virtuellen PROFIBUS-Systems. Da die PROFIBUS-Schnittstelle auch softwareseitig standardisiert ist, können wir auf diesem Weg gewährleisten, dass über die Einbindung einer GSD-Datei die Funktionalität in Verbindung mit dem Siemens SIMATIC Manager jederzeit gegeben ist. Ihr Projekt wird über die MPI-Schnittstelle in Ihre CPU übertragen.
Voraussetzung	Folgende Voraussetzungen müssen für die Projektierung erfüllt sein
	 Siemens SIMATIC Manager auf PC bzw. PG installiert GSD-Dateien in Hardware-Konfigurator von Siemens eingebunden

Serielle Verbindung zur CPU (z.B. MPI-Adapter)

Für die Projektierung der CPU werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator von Siemens vorausgesetzt!

GSD-Datei einbinden

- **1.** Gehen Sie auf www.vipa.com > Service > Download > PRO-FIBUS GSD-Dateien und laden Sie die Datei *System_100V_-_200V_Vxxx.zip*.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis. Die vipa_21x.gsd (deutsch) bzw. vipa_21x.gse (englisch) befinden sich im Verzeichnis CPU21x.
- **3.** Starten Sie den Hardware-Konfigurator von Siemens und schließen Sie alle Projekte.
- **4.** Gehen Sie auf **Extras** > *Neue GSD-Datei installieren*.
- 5. Navigieren Sie in das Verzeichnis CPU21x und geben Sie die entsprechende Datei vipa_21x.gsd (deutsch) oder vipa_21x.gse (englisch) an.
 - ⇒ Die Module des System 200V von VIPA befinden sich im Hardwarekatalog unter PROFIBUS-DP \ Weitere Feldgeräte \ I/O \ VIPA_System_200V.

Vorgehensweise Um kom

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- **1.** Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- **2.** Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- Platzieren Sie auf Steckplatz 2 folgende Siemens CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.)
- **4.** Legen Sie für das System 200V ein neues PROFIBUS-Subnetz an.

der Module

Hardware-Konfiguration - I/O-Module

- 5. Binden Sie an das Subnetz das Slave-System "VIPA CPU21x" mit der PROFIBUS-Adresse 1 an.
 - Nach Einbindung der vipa_21x.gsd finden Sie das Slave-⇒ System im Hardware-Katalog unter PROFIBUS DP > Weitere Feldgeräte > IO > VIPA_System_200V.
- 6. Platzieren Sie immer auf dem 1. Steckplatz die entsprechende CPU 215-2BT16, indem Sie diese dem Hardware-Katalog entnehmen.

4.6 Hardware-Konfiguration - I/O-Module

Hardware-Konfiguration Binden Sie in Ihrem Slave-System nach der CPU Ihre System 200V Module in der gesteckten Reihenfolge ein. Damit die gesteckten Peripheriemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden.

Parametrierung Zur Parametrierung doppelklicken Sie in Ihrer Steckplatzübersicht auf das zu parametrierende Modul. Daraufhin öffnet sich ein Dialogfenster. Hier können Sie Ihre Parametereinstellungen vornehmen.

Parametrierung zur Unter Einsatz der SFCs 55, 56 und 57 können Sie zur Laufzeit Para-Laufzeit meter ändern und an die entsprechenden Module übertragen. Hierbei sind die modulspezifischen Parameter in sogenannten "Datensätzen" abzulegen. Näheres zum Aufbau der Datensätze finden Sie in der Beschreibung zu den Modulen.

4.7 Hardware-Konfiguration - Ethernet-PG/OP-Kanal

Übersicht Die CPU hat einen Ethernet-PG/OP-Kanal integriert. Über diesen Kanal können Sie Ihre CPU programmieren und fernwarten. Bei Erstinbetriebnahme bzw. nach dem Rücksetzen auf Werkseinstellungen besitzt der Ethernet-PG/OP-Kanal keine IP-Adresse. Damit Sie online über den Ethernet-PG/OP-Kanal auf die CPU zugreifen können, müssen Sie diesem gültige IP-Adress-Parameter über den Siemens SIMATIC Manager zuordnen. Diesen Vorgang nennt man "Initialisierung" oder "Urtaufe".

Montage und Inbetriebnahme

- 1. Bauen Sie Ihr System 200V mit Ihrer CPU auf.
- 2. Verdrahten Sie das System, indem Sie die Leitungen für Spannungsversorgung und Signale anschließen.
- **3.** Verbinden Sie die Ethernet-Buchse des Ethernet-PG/OP-Kanals mit Ethernet.
- **4.** Schalten Sie die Spannungsversorgung ein.
 - Nach kurzer Hochlaufzeit ist der CP bereit für die Kommunikation. Er besitzt ggf. noch keine IP-Adressdaten und erfordert eine Urtaufe.

"Urtaufe" über Zielsystemfunktionen

Die Urtaufe über die Zielsystemfunktion erfolgt nach folgender Vorgehensweise:

- Ermitteln Sie die aktuelle Ethernet (MAC) Adresse Ihres Ethernet-PG/OP-Kanals.
 - ⇒ Sie finden diese immer auf einem Aufkleber an der linken Seite der CPU.

Hardware-Konfiguration - Ethernet-PG/OP-Kanal

IP-Adress-Parameter zuweisen

Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator. Die Zuweisung der IP-Adress-Daten erfolgt online im Siemens SIMATIC Manager ab Version V 5.3 & SP3 nach folgender Vorgehensweise:

- **1.** Starten Sie den Siemens SIMATIC Manager und stellen Sie über Extras > *PG/PC-Schnittstelle einstellen* auf "TCP/IP -> Netzwerkkarte " ein.
- **2.** Öffnen Sie mit **Zielsystem** > *Ethernet-Teilnehmer bearbeiten* das gleichnamige Dialogfenster.
- 3. Benutzen Sie die Schaltfläche [Durchsuchen], um die über MAC-Adresse erreichbaren Geräte zu ermitteln oder tragen Sie die MAC-Adresse ein. Die MAC-Adresse finden Sie auf dem 1. Aufkleber unter der Frontklappe der CPU.
- **4.** Wählen Sie ggf. bei der Netzwerksuche aus der Liste die Baugruppe mit der Ihnen bekannten MAC-Adresse aus.
- 5. Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, Subnet-Maske und den Netzübergang eintragen. Sie können aber auch über einen DHCP-Server eine IP-Adresse beziehen. Hierzu ist dem DHCP-Server je nach gewählter Option die MAC-Adresse, der Gerätename oder die hier eingebbare Client-ID zu übermitteln. Die Client-ID ist eine Zeichenfolge aus maximal 63 Zeichen. Hierbei dürfen folgende Zeichen verwendet werden: Bindestrich "-", 0-9, a-z, A-Z
- **6.** Bestätigen Sie mit [IP-Konfiguration zuweisen] Ihre Eingabe.

Direkt nach der Zuweisung ist der Ethernet-PG/OP-Kanal über die angegebenen IP-Adress-Daten online erreichbar. Der Wert bleibt bestehen, solange dieser nicht neu zugewiesen, mit einer Hardware-Projektierung überschrieben oder Rücksetzen auf Werkseinstellung ausgeführt wird.

IP-Adress-Parameter in Projekt übernehmen

- Öffnen Sie den Siemens Hardware-Konfigurator und projektieren Sie die VIPA CPU 215-2BT16 als Siemens CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.), zu finden unter SIMATIC 300 \ CPU 300 \ CPU 315-2DP. Parametrieren Sie ggf. die CPU 315-2DP.
- 2. Projektieren Sie stellvertretend für den CP den Siemens-CP CP343-1 (343-1EX11) auf Steckplatz 4, zu finden unter SIMATIC 300 \ CP 300 \ Industrial Ethernet \ CP 343-1.
- 3. Öffnen Sie durch Doppelklick auf den CP 343-1EX11 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" die zuvor zugewiesenen IP-Adress-Daten an.

Einstellung CPU-Parameter > Parameter CPU

4. Übertragen Sie Ihr Projekt.

4.8 Einstellung CPU-Parameter

Parametrierung über Siemens CPU

Da die CPU von VIPA im Hardware-Konfigurator als Siemens CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.) zu projektieren ist, können Sie bei der Hardware-Konfiguration unter den "Eigenschaften" der CPU 315-2DP die Parameter für die VIPA-CPU einstellen. Durch Doppelklick auf die CPU 315-2DP gelangen Sie in das Parametrierfenster für die CPU. Über die Register haben Sie Zugriff auf alle Standard Parameter Ihrer CPU.

4.8.1 Parameter CPU

Parameter, die unterstützt werden

Die CPU wertet nicht alle Parameter aus, welche Sie bei der Hardware-Konfiguration einstellen können. Folgende Parameter werden zur Zeit in der CPU ausgewertet:

Allgemein

- Kurzbezeichnung: Kurzbezeichnung Siemens CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.).
- Bestell-Nr./ Firmware: Bestellnummer und Firmware sind identisch zu den Angaben im Fenster "Hardware Katalog".
- Name: Als Name steht hier die Kurzbezeichnung der CPU. Wenn Sie den Namen ändern, erscheint dieser im Siemens SIMATIC Manager.
- Anlagenkennzeichen: Hier haben Sie die Möglichkeit für die CPU ein spezifisches Anlagenkennzeichen festzulegen. Mit dem Anlagenkennzeichen werden Teile der Anlage eindeutig nach funktionalen Gesichtspunkten gekennzeichnet. Es ist gemäß IEC 1346-1 hierarchisch aufgebaut.
- Kommentar: Hier können Sie den Einsatzzweck der Baugruppe eingeben.

Einstellung CPU-Parameter > Parameter CPU

Anlauf	•	Anlauf bei Sollausbau ungleich Istausbau: Wenn "Anlauf bei Sollausbau ungleich Istausbau" deaktiviert ist und mindestens eine Baugruppe nicht auf dem projektierten Steckplatz steckt, oder dort eine Baugruppe von einem anderen Typ steckt, geht die CPU nicht in RUN und verbleibt in STOP. Wenn "Anlauf bei Sollausbau ungleich Istausbau" aktiviert ist, läuft die CPU an, auch wenn Baugruppen nicht auf den projektierten Steckplätzen stecken oder dort Baugruppen eines anderen Typs stecken (z.B. bei Inbetriebnahme).
	•	Überwachungszeit für Fertigmeldung durch Baugruppen [100ms]: Maximale Dauer für die Fertigmeldung aller konfigurierten Bau- gruppen nach NetzEIN. Hierbei werden auch angebundene PRO- FIBUS-DP-Slaves berücksichtigt, bis diese parametriert sind. Wenn nach Ablauf dieser Zeit die Baugruppen keine Fertigmel- dung an die CPU senden, ist der Istausbau ungleich dem Soll- ausbau.
		Überwachungszeit für Übertragung der Parameter an Baugruppen [100ms]: Maximale Dauer für die Übertragung der Parameter an die parametrierbaren Baugruppen. Wenn nach Ablauf dieser Zeit nicht alle Baugruppen parametriert sind, ist der Istausbau ungleich dem Sollausbau.
Zyklus / Taktmerker		OB1-Prozessabbild zyklisch aktualisieren: Dieser Parameter ist
	•	Zyklusüberwachungszeit: Hier geben Sie die Zyklusüberwa- chungszeit in ms ein. Wenn die Zykluszeit die Zyklusüberwa- chungszeit überschreitet, geht die CPU in STOP. Ursachen für eine Überschreitung: – Kommunikationsprozesse – Häufung von Alarmereignissen
	_	– Fehler im CPU-Programm
	i.	Mindestzykluszeit: Dieser Parameter ist nicht relevant. Zyklusbelastung durch Kommunikation: Dieser Parameter ist nicht relevant
	-	Größe Prozessabbild der Ein-/Ausgänge: Hier können Sie die Größe des Prozessabbilds max. 2048 für die Ein-/ Ausgabe-Peri- pherie festlegen.
		OB85-Aufruf bei Peripheriezugriffsfehler: Sie können die voreinge- stellte Reaktion der CPU bei Peripheriezugriffsfehlern während der systemseitigen Aktualisierung des Prozessabbildes ändern. Die VIPA-CPU ist so voreingestellt, dass sie bei Peripheriezu- griffsfehlern keinen OB 85 aufruft und auch keinen Eintrag im Diagnosepuffer erzeugt.
	1	Taktmerker: Aktivieren Sie dieses Kästchen, wenn Sie einen Takt- merker einsetzen und geben Sie die Nummer des Merkerbytes ein.
		O Das gewählte Merkerbyte kann nicht für die Zwischenspei- cherung von Daten genutzt werden.
_	_	
Remanenz		Anzahl Merkerbytes ab MB0: Die Anzahl der remanenten Merker- bytes ab Merkerbyte 0 können Sie hier angeben. Anzahl S7-Timer ab T0: Hier tragen Sie die Anzahl der rema- nenten S7-Timer ab T0 ein.

	2	Anzahl S7-Zähler ab Z0: Tragen Sie die Anzahl der remanenten S7-Zähler ab Z0 hier ein. Bereiche: Diese Parameter sind nicht relevant
		Dereiche. Diese i arameter sind nicht reievant.
Alarme	•	Priorität: Hier werden die Prioritäten angezeigt, nach denen der entsprechende Alarm-OB (Prozessalarm, Verzögerungsalarm, Asynchronfehleralarm) bearbeitet wird.
Uhrzeitalarme	1	Priorität: Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende Uhrzeitalarm-OB bearbeitet werden soll. Mit Priorität "0" wählen Sie den entsprechenden OB ab.
		Aktiv: Bei aktiviertem Kästchen, wird der Uhrzeitalarm-OB bei einem Neustart automatisch gestartet.
		Ausführung: Hier wählen Sie aus, wie oft die Alarme ausgeführt werden sollen. Die Intervalle von minütlich bis jährlich beziehen sich auf die Einstellungen unter <i>Startdatum</i> und <i>Uhrzeit</i> .
		Startdatum/Uhrzeit: Hier geben Sie an, wann der Uhrzeitalarm zum ersten Mal ausgeführt werden soll.
		Teilprozessabbild: Dieser Parameter wird nicht unterstützt.
Weckalarme	•	Priorität: Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende Weckalarm-OB bearbeitet werden soll. Mit Pri- orität "0" wählen Sie den entsprechenden OB ab
	-	Ausführung: Geben Sie die Zeitabstände in ms an, in denen die Weckalarm-OBs bearbeitet werden. Startzeitpunkt ist der Betriebszustandwechsel von STOP nach RUN.
	1	Phasenverschiebung: Geben Sie hier eine Zeit in ms an, um welche der tatsächliche Ausführungszeitpunkt des Weckalarms verzögert werden soll. Dies ist sinnvoll, wenn mehrere Wecka- larme aktiv sind. Mit der <i>Phasenverschiebung</i> können diese über den Zyklus hinweg verteilt werden
	•	Teilprozessabbild: Dieser Parameter wird nicht unterstützt.
Schutz	•	Schutzstufe: Hier können Sie eine von 3 Schutzstufen einstellen, um die CPU vor unbefugtem Zugriff zu schützen. – Schutzstufe 1 (voreingestellt):
		– Schutzstufe 2 mit Passwort:
		Kenntnis des Passworts: lesender und schreibender Zugriff Unkenntnis des Passworts: nur lesender Zugriff. – Schutzstufe 3:
		Kenntnis des Passworts: lesender und schreibender Zugriff Unkenntnis des Passworts: weder lesender noch schreibender Zugriff
4.9 Projekt transferier	ren	
Ubersicht	Sie CP	e haben tolgende Möglichkeiten für den Projekt-Transfer in die 'U:

- Transfer über MPI
- Transfer über Ethernet
- Transfer über MMC bei Einsatz eines MMC-Lesers

Projekt transferieren > Transfer über MPI

4.9.1 Transfer über MPI

Der Aufbau eines MPI-Netzes gleicht elektrisch dem Aufbau eines PROFIBUS-Netzes. Das heißt, es gelten dieselben Regeln und Sie verwenden für beide Netze die gleichen Komponenten zum Aufbau. Die einzelnen Teilnehmer werden über Busanschlussstecker und PROFIBUS-Kabel verbunden. Defaultmäßig wird das MPI-Netz mit 187,5kBaud betrieben. VIPA-CPUs werden mit der MPI-Adresse 2 ausgeliefert.

MPI-Programmierkabel Die MPI-Programmierkabel erhalten Sie in verschiedenen Varianten von VIPA. Die Kabel bieten einen RS232- bzw. USB-Anschluss für den PC und einen busfähigen RS485-Anschluss für die CPU. Aufgrund des RS485-Anschlusses dürfen Sie die MPI-Programmierkabel direkt auf einen an der RS485-Buchse schon gesteckten Stecker aufstecken. Jeder Busteilnehmer identifiziert sich mit einer eindeutigen Adresse am Bus, wobei die Adresse 0 für Programmiergeräte reserviert ist.

Abschlusswiderstand Eine Leitung muss mit ihrem Wellenwiderstand abgeschlossen werden. Hierzu schalten Sie den Abschlusswiderstand am ersten und am letzten Teilnehmer eines Netzes oder eines Segments zu. Achten Sie darauf, dass die Teilnehmer, an denen der Abschlusswiderstand zugeschaltet ist, immer mit Spannung versorgt sind. Ansonsten kann es zu Störungen auf dem Bus kommen.

Transfer mit MPI-Programmierkabel (MPI-Kommunikation)

Transfer mit "Green Cable" (Serielle Kommunikation)

Durch <u>ausschließlich direktes</u> Stecken des "Green Cable" auf einer MP²I-Buchse können Sie eine serielle Verbindung zwischen PC und CPU herstellen. Geben Sie unter *Lokaler Anschluss* den PC-COM-Port und die Übertragungsrate 38400Baud ein. Die Einstellungen im Register *MPI* werden bei "Green Cable" Einsatz ignoriert.

Projekt transferieren > Transfer über MPI

	 MPI-Programmierkabel Aktuell werden die VIPA Programmierkabel (950-0KBxx) für den Transfer über MPI nicht unterstützt. Dies ist aus- schließlich über Programmierkabel von Siemens möglich. Unter Windows[®] 7 ist das "Green Cable" (950-0KB00) nicht einsetzbar.
MPI konfigurieren	Hinweise zur Konfiguration einer MPI-Schnittstelle finden Sie in der Dokumentation zu Ihrer Programmiersoftware. Das "Green Cable" hat die BestNr.: 950-0KB00.
	WARNUNG! Das "Green Cable" dürfen Sie ausschließlich bei VIPA CPUs mit MP ² I-Schnittstellen einsetzen. Bitte beachten Sie hierzu die Hinweise zum Einsatz der MPI-Buchse und des Green Cable!
Vorgehensweise Transfer über MPI- Schnittstelle	
	1. Verbinden Sie Ihren PC über ein MPI-Programmierkabel mit der MPI- Buchse Ihrer CPU
	2. Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
	3. Wählen Sie im Menü Extras > PG/PC-Schnittstelle einstellen
	4. Wählen Sie in der Auswahlliste "PC Adapter (MPI)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigen- schaften].
	5. Stellen Sie im Register <i>MPI</i> die Übertragungsparameter Ihres MPI-Netzes ein und geben Sie eine gültige <i>Adresse</i> an.
	6. Wechseln Sie in das Register <i>Lokaler Anschluss</i>
	7. Geben Sie den COM-Port des PCs an und stellen Sie für Ihr MPI-Programmierkabel die Übertragungsrate 38400Baud ein.
	8. Mit Zielsystem > Laden in Baugruppe können Sie Ihr Projekt über MPI in die CPU übertragen und mit Zielsystem > <i>RAM</i> <i>nach ROM kopieren</i> auf einer MMC sichern, falls diese gesteckt ist.
	 Bitte beachten Sie, dass Sie bei Einsatz des Green Cable die Übertragungsgeschwindigkeit auf 38400 Baud einstellen.
Hinweise zum Green Cable	Das Green Cable ist ein grünes Verbindungskabel, das ausschließ- lich zum Einsatz an VIPA System-Komponenten konfektioniert ist. Das Green Cable ist ein Programmier- und Downloadkabel für VIPA CPUs mit MP2I-Buchse sowie VIPA Feldbus-Master. Sie erhalten das Green Cable von VIPA unter der BestNr.: VIPA 950-0KB00.

Mit dem Green Cable können Sie:

- Projekte seriell übertragen
 - Unter Umgehung aufwändiger Hardware (MPI-Adapter, etc.) können Sie über das Green Cable eine serielle Punkt-zu-Punkt-Verbindung über die MP2I-Schnittstelle realisieren.
- Firmware-Updates der CPUs und Feldbus-Master durchführen
 - Über das Green Cable können Sie unter Einsatz eines Upload-Programms die Firmware aller aktuellen VIPA CPUs mit MP²I-Buchse sowie bestimmte Feldbus-Master (s. Hinweis) aktualisieren.

Wichtige Hinweise zum Einsatz des Green Cable

Bei Nichtbeachtung der nachfolgenden Hinweise können Schäden an den System-Komponenten entstehen. Für Schäden, die aufgrund der Nichtbeachtung dieser Hinweise und bei unsachgemäßem Einsatz entstehen, übernimmt die VIPA keinerlei Haftung!

Hinweis zum Einsatzbereich

Das Green Cable darf ausschließlich <u>direkt</u> an den hierfür vorgesehenen Buchsen der VIPA-Komponenten betrieben werden (Zwischenstecker sind nicht zulässig). Beispielsweise ist vor dem Stecken des Green Cable ein gestecktes MPI-Kabel zu entfernen. Zurzeit unterstützen folgende Komponenten das Green Cable: VIPA CPUs mit MP²I-Buchse sowie die Feldbus-Master von VIPA.

Hinweis zur Verlängerung

Die Verlängerung des Green Cable mit einem weiteren Green Cable bzw. die Kombination mit weiteren MPI-Kabeln ist nicht zulässig und führt zur Beschädigung der angeschlossenen Komponenten! Das Green Cable darf nur mit einem 1:1 Kabel (alle 9 Pin 1:1 verbunden) verlängert werden.

4.9.2 Transfer über Ethernet

Die CPU besitzt für den Transfer über Ethernet folgende Schnittstelle:

Ethernet-PG/OP-Kanal

Initialisierung

Damit Sie auf die entsprechende Ethernet-Schnittstelle online zugreifen können, müssen Sie dieser durch die "Initialisierung" bzw. "Urtaufe" IP-Adress-Parameter zuweisen. ♦ *"Hardware-Konfiguration* - Ethernet-PG/OP-Kanal" auf Seite 43

Transfer

- **1.** Für den Transfer verbinden Sie, wenn nicht schon geschehen, die entsprechende Ethernet-Buchse mit Ihrem Ethernet.
- **2.** Öffnen Sie Ihr Projekt im Siemens SIMATIC Manager.

- 3. Stellen Sie über **Extras** > *PG/PC-Schnittstelle den Zugriffsweg* "TCP/IP -> Netzwerkkarte " ein.
- 4. Gehen Sie auf Zielsystem > Laden in Baugruppe

 \rightarrow es öffnet sich das Dialogfenster "Zielbaugruppe auswählen".

Wählen Sie die Zielbaugruppe aus und geben Sie als Teilnehmeradresse die IP-Adress-Parameter des entsprechenden Ethernet-Schnittstelle an. Sofern keine neue Hardware-Konfiguration in die CPU übertragen wird, wird die hier angegebene Ethernet-Verbindung dauerhaft als Transferkanal im Projekt gespeichert.

5. Starten Sie mit [OK] den Transfer.

Systembedingt kann es zu einer Meldung kommen, dass sich die projektierte von der Zielbaugruppe unterscheidet. Quittieren Sie diese Meldung mit [OK].

→ Ihr Projekt wird übertragen und kann nach der Übertragung in der CPU ausgeführt werden.

4.9.3 Transfer über MMC

Die MMC (**Mem**ory **C**ard) dient als externes Speichermedium. Es dürfen sich mehrere Projekte und Unterverzeichnisse auf einer MMC befinden. Bitte beachten Sie, dass sich Ihre aktuelle Projektierung im Root-Verzeichnis befindet und einen der folgenden Dateinamen hat:

- S7PROG.WLD
- S7PROGF.WLD
- AUTOLOAD.WLD

Mit **Datei** > Memory-Card-Datei > Neu können Sie im Siemens SIMATIC Manager eine WLD-Datei erzeugen. Danach kopieren Sie aus dem Baustein-Ordner Ihres Projekts alle Bausteine und die Systemdaten in die WLD-Datei.

Transfer MMC → CPU Das Übertragen des Anwenderprogramms von der MMC in die CPU erfolgt je nach Dateiname nach Urlöschen oder nach PowerON.

- S7PROG.WLD wird nach Urlöschen von der MMC gelesen und in das batteriegepufferte RAM übertragen
- S7PROGF.WLD wird nach Urlöschen von der MMC gelesen, in das batteriegepufferte RAM und zusätzlich in den Flash-Speicher übertragen. Ein Zugriff auf den Flash-Speicher erfolgt nur bei leerer Pufferbatterie, sofern keine MMC mit Anwenderprogramm gesteckt ist.
- AUTOLOAD.WLD wird nach NetzEIN von der MMC gelesen und in das batteriegepufferte RAM übertragen .

Das Blinken der LED "MC" der CPU kennzeichnet den Übertragungsvorgang. Bitte beachten Sie, dass Ihr Anwenderspeicher ausreichend Speicherplatz für Ihr Anwenderprogramm bietet, ansonsten wird Ihr Anwenderprogramm unvollständig geladen und die SF-LED leuchtet. Führen Sie vor der Übertragung eine Komprimierung durch, da keine automatische Komprimierung durchgeführt wird.

Transfer CPU → MMC	Bei einer in der CPU gesteckten MMC wird durch einen Schreibbefehl der Inhalt des batteriegepufferten RAMs als <i>S7PROG.WLD</i> auf die MMC und in den internen Flash-Speicher übertragen. Den Schreibbe- fehl starten Sie aus dem Siemens SIMATIC Manager auf Baustein- ebene über Zielsystem > <i>RAM nach ROM kopieren</i> . Während des Schreibvorgangs blinkt die "MC"-LED. Erlischt die LED, ist der Schreibvorgang beendet. Soll dieses Projekt automatisch nach einem NetzEIN von der MMC geladen werden, so müssen Sie dieses auf der MMC in <i>AUTOLOAD.WLD</i> umbenennen.
Kontrolle des Transfer- vorgangs	Nach einem MMC-Zugriff erfolgt ein Diagnose-Eintrag der CPU. Zur Anzeige der Diagnoseeinträge gehen Sie im Siemens SIMATIC Manager auf Zielsystem > <i>Baugruppenzustand</i> . Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster. Nähere Infor- mationen zu den Ereignis-IDs finden Sie unter "VIPA-spezifische Diagnose-Einträge".
4.10 Betriebszuständ	de
Übersicht	Die CPU kennt 3 Betriebszustände:
	Betriebszustand STOPBetriebszustand ANLAUFBetriebszustand RUN
	In den Betriebszuständen ANLAUF und RUN können bestimmte Ereignisse auftreten, auf die das Systemprogramm reagieren muss. In vielen Fällen wird dabei ein für das Ereignis vorgesehener Organi- sationsbaustein als Anwenderschnittstelle aufgerufen.
Betriebszustand STOP	 Das Anwenderprogramm wird nicht bearbeitet. Hat zuvor eine Programmbearbeitung stattgefunden, bleiben die Werte von Zählern, Zeiten, Merkern und des Prozessabbilds beim Übergang in den STOP-Zustand erhalten. Die Befehlsausgabe ist gesperrt, d.h. alle digitalen Ausgaben sind gesperrt. RUN-LED (R) aus STOP-LED (S) an
Betriebszustand ANLAUF	 Während des Übergangs von STOP nach RUN erfolgt ein Sprung in den Anlauf-Organisationsbaustein OB 100. Der Ablauf des OBs wird zeitlich nicht überwacht. Im Anlauf-OB können weitere Bau- steine aufgerufen werden. Beim Anlauf sind alle digitalen Ausgaben gesperrt, d.h. die Befehlsausgabesperre ist aktiv. RUN-LED blinkt, solange der OB 100 bearbeitet wird und für min- destens 3s, auch wenn der Anlauf kürzer ist oder die CPU auf- grund eines Fehler in STOP geht. Dies zeigt den Anlauf an. STOP-LED aus Wenn die CPU einen Anlauf fertig bearbeitet hat, geht Sie in den Betriebszustand RUN über.

Betriebszustand RUN	 Das Anwenderprogramm im OB 1 wird zyklisch bearbeitet, wobei zusätzlich alarmgesteuert weitere Programmteile eingeschachtelt werden können. Alle im Programm gestarteten Zeiten und Zähler laufen und das Prozessabbild wird zyklisch aktualisiert. Das BASP-Signal (Befehlsausgabesperre) wird deaktiviert, d.h. alle digitalen Ausgänge sind freigegeben. RUN-LED an STOP-LED aus
Funktionssicherheit	Die CPUs besitzen Sicherheitsmechanismen, wie einen Watchdog (100ms) und eine parametrierbare Zykluszeitüberwachung (paramet- rierbar min. 1ms), die im Fehlerfall die CPU stoppen bzw. einen RESET auf der CPU durchführen und diese in einen definierten STOP-Zustand versetzen. Die CPUs von VIPA sind funktionssicher ausgelegt und besitzen folgende Systemeigenschaften:

Ereignis	betrifft	Effekt	
$RUN \to STOP$	allgemein	BASP (Befehls-Ausgabe-Sperre) wird gesetzt.	
	zentrale digitale Aus- gänge	Die Ausgänge werden abgeschaltet.	
	zentrale analoge Aus- gänge	 Die Ausgänge werden abgeschaltet. Spannungsausgänge geben 0V aus Stromausgänge 020mA geben 0mA aus Stromausgänge 420mA geben 4mA aus Falls parametriert können auch Ersatzwerte ausgegeben werden. 	
	dezentrale Ausgänge	Verhalten wie bei zentralen digitalen/analogen Ausgängen	
	dezentrale Eingänge	Die Eingänge werden von der dezentralen Sta- tion zyklisch gelesen und die aktuellen Werte zur Verfügung gestellt.	
STOP → RUN bzw. NetzEin	allgemein	Zuerst wird das PAE gelöscht, danach erfolgt der Aufruf des OB 100. Nachdem dieser abgearbeitet ist, wird das BASP zurückgesetzt und der Zyklus gestartet mit: PAA löschen \rightarrow PAE lesen \rightarrow OB 1.	
	dezentrale Eingänge	Die Eingänge werden von der dezentralen Sta- tion einmalig gelesen und die aktuellen Werte zur Verfügung gestellt.	
RUN	allgemein	Der Programmablauf ist zyklisch und damit vorhersehbar: PAE lesen \rightarrow OB 1 \rightarrow PAA schreiben.	
PAE: Prozessabbild der Eingänge, PAA: Prozessabbild der Ausgänge			

4.11 Urlöschen

Übersicht

Beim Urlöschen wird der komplette Anwenderspeicher gelöscht. Ihre Daten auf der Memory Card bleiben erhalten.

Urlöschen

Sie haben 2 Möglichkeiten zum Urlöschen:

- Urlöschen über Betriebsartenschalter
- Urlöschen über Konfigurations-Software wie z.B. Siemens SIMATIC Manager

Vor dem Laden Ihres Anwenderprogramms in Ihre CPU sollten Sie die CPU immer urlöschen, um sicherzustellen, dass sich kein alter Baustein mehr in Ihrer CPU befindet.

Urlöschen	über
Betriebsar	tenschalter

Voraussetzung

Ihre CPU muss sich im STOP-Zustand befinden.

- Stellen Sie hierzu den CPU-Betriebsartenschalter auf "ST"
 - \Rightarrow die S-LED leuchtet.

Urlöschen

- **1.** Bringen Sie den Betriebsartenschalter in Stellung MR und halten Sie Ihn ca. 3 Sekunden.
 - ⇒ Die S-LED geht von Blinken über in Dauerlicht.
- **2.** Bringen Sie den Betriebsartenschalter in Stellung ST und innerhalb von 3 Sekunden kurz in MR dann wieder auf ST.
 - ⇒ Die S-LED blinkt (Urlösch-Vorgang).
- **3.** Das Urlöschen ist abgeschlossen, wenn die S-LED in Dauerlicht übergeht
 - ⇒ Die S-LED leuchtet.

Die nachfolgende Abbildung zeigt nochmals die Vorgehensweise:

Automatisch nachladen

- **1.** Falls auf der MMC ein Projekt S7PROG.WLD vorhanden ist, versucht die CPU dieses von der MMC neu zu laden.
 - \Rightarrow Die MC-LED leuchtet.
- 2. Nach dem Nachladen erlischt die LED. Abhängig von der Einstellung des Betriebsartenschalters bleibt die CPU in STOP bzw. geht in RUN.

Urlöschen über Sie- mens SIMATIC Manager	Voraussetzung Ihre CPU muss sich im STOP-Zustand befinden. Mit dem Menübefehl Zielsystem > Betriebszustand bringen Sie Ihre CPU in STOP.			
	Urlöschen			
	Über den Menübefehl Zielsystem > Urlöschen fordern Sie das Urlöschen an.			
	2. In dem Dialogfenster können Sie, wenn noch nicht geschehen, Ihre CPU in STOP bringen und das Urlöschen starten. Während des Urlöschvorgangs blinkt die S-LED.			
	Geht die S-LED in Dauerlicht über, ist der Urlöschvorgang abgeschlossen.			
Automatisch nachladen				
	1. Falls auf der MMC ein Projekt S7PROG.WLD vorhanden ist, versucht die CPU dieses von der MMC neu zu laden.			
	⇒ Die MC-LED leuchtet.			
	2. Nach dem Nachladen erlischt die LED. Abhängig von der Ein- stellung des Betriebsartenschalters bleibt die CPU in STOP bzw. geht in RUN.			
Rücksetzen auf Werks- einstellung	Das <i>Rücksetzten auf Werkseinstellung</i> löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand. Bitte beachten Sie, dass hierbei auch die MPI-Adresse defaultmäßig auf 2 zurückgestellt wird! Nähere Informationen hierzu finden Sie unter "Rücksetzen auf Werkseinstellung" weiter unten.			
4.12 Firmwareupdate	9			
Übersicht	Sie haben die Möglichkeit unter Einsatz einer MMC für die CPU 215-2BT16 und ihre Komponenten ein Firmwareupdate durchzu- führen. Hierzu muss sich in der CPU beim Hochlauf eine entspre- chend vorbereitete MMC befinden. Damit eine Firmwaredatei beim Hochlauf erkannt und zugeordnet werden kann, ist für jede updatefä- hige Komponente ein Dateiname reserviert (siehe Tabelle unten). Nach NetzEIN und CPU-STOP prüft die CPU, ob eine Firmware- Datei auf der MMC vorhanden ist. Wenn sich diese Firmware-Version von der zu überschreibenden Firmware-Version unterscheidet, zeigt die CPU dies über LED-Blinken an und sie können die Firmware über eine Updateanforderung installieren.			

- Aktuelle Firmware auf
www.vipa.comDie aktuellsten Firmwarestände finden Sie im Service-Bereich auf
www.vipa.com
- **CPU Firmware-Version ermitteln** Den ausgelieferten Firmwarestand können Sie einem Aufkleber entnehmen, der sich auf der Rückseite der entsprechenden Komponente befindet. Sie haben auch die Möglichkeit im Siemens SIMATIC Manager den aktuellen Firmwarestand Ihrer CPU auszulesen. Gehen Sie hierzu über Ihr PG bzw. Ihren PC mit der CPU online und starten den Siemens SIMATIC Manager. Über **Zielsystem** > *Baugruppenzustand*, Register "Allgemein" wird der aktuelle CPU-Firmwarestand ermittelt und angezeigt.

Firmwareupdate

Firmware laden und mit	 Gehen Sie auf www.vipa.com Klicken Sie auf Service > Download > Firmware. Navigieren Sie über System 200V > CPU zu Ihrer CPU und laden
reserviertem Namen auf	Sie gemäß Ihrem Hardware-Ausgabestand die zip-Datei auf ihren
MMC übertragen	PC. Öffnen Sie die zip-Datei und kopieren Sie die Dateien auf Ihre
Reservierte Dateinamen	 MMC. Benennen Sie diese entsprechend um. In der CPU 215-2BT16 kann mittels reserviertem Dateinamen per MMC-Karte ein Firmware-Update aufgespielt werden:

Komponente	Dateiname	Neuer Dateiname auf MMC			
	Best-NrAusgabestand_Version.ZIP				
CPU	Bx000bin	firmware.bin			
CP	Px000245.pkg	Px000245.pkg			

	WARNUNG! Beim Aufspielen einer neuen Firmware ist äußerste Vor- sicht geboten. Unter Umständen kann Ihre CPU unbrauchbar werden, wenn beispielsweise während der Übertragung die Spannungsversorgung unterbrochen wird oder die Firmware-Datei fehlerhaft ist. Setzten Sie sich in diesem Fall mit der VIPA-Hotline in Verbindung! Bitte beachten Sie, dass sich die zu überschreibende Firmware- Version von der Update-Version unterscheidet, ansonsten erfolgt kein Update.
Firmware von MMC in CPU übertragen	Bringen Sie den Betriebsartenschalter Ihrer CPU in Stellung ST. Schalten Sie die Spannungsversorgung aus. Stecken Sie die MMC mit den Firmware-Dateien in die CPU. Achten Sie hierbei auf die Steckrichtung der MMC. Schalten Sie die Spannungsver- sorgung ein.
	2. Nach einer kurzen Hochlaufzeit zeigt das abwechselnde Blinken der LEDs SF und FC an, dass auf der MMC mindestens eine abweichende Firmware-Datei gefunden wurde.
	3. Sie starten die Übertragung der Firmware, sobald Sie innerhalb von 10s den Betriebsartenschalter kurz nach MR tippen und dann den Schalter in der ST-Position belassen. Während des Update-Vorgangs blinken die LEDs SF und FC abwechselnd und die MC-LED leuchtet. Dieser Vorgang kann mehrere Minuten dauern.
	Während des Update-Vorgangs blinken die LEDs SF und FC abwechselnd und die MC-LED leuchtet. Dieser Vorgang kann mehrere Minuten dauern.
	 5. Das Update ist fehlerfrei beendet, wenn die LEDs PW, S, SF, FC und MC leuchten. Blinken diese schnell, ist ein Fehler aufge- treten.

6. Schalten Sie die Spannungsversorgung aus und wieder ein. Jetzt prüft die CPU, ob noch weitere Firmware-Updates durchzuführen sind. Ist dies der Fall, blinken, wiederum nach einer kurzen Hochlaufzeit, die LEDs SF und FC. Fahren Sie mit Punkt 3 fort.

Blinken die LEDs nicht, ist das Firmware-Update abgeschlossen.

Führen Sie jetzt wie nachfolgend beschrieben ein Rücksetzen auf Werkseinstellungen durch. Danach ist die CPU wieder einsatzbereit.

4.13 Rücksetzen auf Werkseinstellung

Vorgehensweise

Die folgende Vorgehensweise löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand. Bitte beachten Sie, dass hierbei auch die MPI-Adresse auf 2 zurückgestellt wird!

- **1.** Bringen Sie die CPU in STOP.
- 2. Drücken Sie den Betriebsartenschalter für ca. 30 Sekunden nach unten in Stellung MR. Hierbei blinkt die S-LED. Nach ein paar Sekunden leuchtet die S-LED. Die STOP-LED wechselt jetzt von Leuchten in Blinken. Zählen Sie, wie oft die S-LED leuchtet.
- 3. Nach dem 6. mal Leuchten der STOP-LED lassen Sie den Reset-Schalter wieder los, um ihn nochmals kurzzeitig nach unten zu drücken. Jetzt leuchtet die grüne R-LED einmal auf. Das bedeutet, dass das RAM vollständig gelöscht ist.
- 4. Zur Bestätigung des Rücksetzvorgangs leuchten die LEDs PW und S.

- **5.** Danach ist die Spannungsversorgung aus- und wieder einzuschalten.
 - ⇒ Die nachfolgende Abbildung soll die Vorgehensweise verdeutlichen:

Bitte führen Sie nach einem Firmwareupdate der CPU immer ein Rücksetzen auf Werkseinstellung durch.

4.14 Diagnose-Einträge

Einträge im Diagnosepuffer

Sie haben die Möglichkeit im Siemens SIMATIC Manager den Diagnosepuffer der CPU auszulesen. Neben den Standardeinträgen im Diagnosepuffer gibt es in den CPUs der VIPA noch zusätzliche Einträge, welche ausschließlich in Form einer Ereignis-ID angezeigt werden.

Mit dem CMD DIAGBUF wird der aktuelle Inhalt des Diagnosepuffers auf die Speicherkarte gespeichert.

\bigcirc	

Die CPUs von VIPA unterstützen alle Register des Baugruppenzustands. Eine nähere Beschreibung der einzelnen Register finden Sie in der Online-Hilfe Ihres Siemens SIMATIC Managers.

Anzeige der Diagnoseeinträge Zur Anzeige der Diagno SIMATIC Manager auf

Zur Anzeige der Diagnoseeinträge gehen Sie in Ihrem Siemens SIMATIC Manager auf *"Zielsystem* → *Baugruppenzustand"*. Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster:

Diagnose-Einträge

Baugru	ippenzustanc	ł						
ad: Erreid	chbare Teilnehr	mer MPI = 2				Betrie	ebszusta	nd CPU: RUN
··· Diagnosepuffer ··· ···								
Nr.	Uhrzeit	Datum	Ereig	nis				
8								
9 10			 Eroia	nie_ID•		_		
11	13.10.11.370	19.12.2011		III5-ID.				
12								
13								VIPA-
Details:								
	_					-		

Für die Diagnose ist der Betriebszustand der CPU irrelevant. Es können maximal 100 Diagnoseeinträge in der CPU gespeichert werden.

Übersicht der Ereignis-IDs

Ereignis-ID	Bedeutung
0xE003	Fehler beim Zugriff auf Peripherie
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE004	Mehrfach-Parametrierung einer Peripherieadresse
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE005	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE006	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE007	Konfigurierte Ein-/Ausgangsbytes passen nicht in Peripheriebereich
0xE008	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE009	Fehler beim Zugriff auf Standard-Rückwandbus
0xE010	Nicht definierte Baugruppe am Rückwandbus erkannt
	Zinfo2: Steckplatz
	Zinfo3: Typkennung
0xE011	Masterprojektierung auf Slave-CPU nicht möglich
	oder fehlerhafte Slavekonfiguration
0xE012	Fehler bei Parametrierung
0xE013	Fehler bei Schieberegisterzugriff auf VBUS Digitalmodule
0xE014	Fehler bei Check_Sys

Mit Testfunktionen Variablen steuern und beobachten

Ereignis-ID	Bedeutung
0xE015	Fehler beim Zugriff auf Master
	Zinfo2: Steckplatz des Masters (32=Kachelmaster)
0xE016	Maximale Blockgröße bei Mastertransfer überschritten
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE017	Fehler beim Zugriff auf integrierten Slave
0xE018	Fehler beim Mappen der Masterperipherie
0xE019	Fehler bei Erkennung des Standard Rückwandbus Systems
0xE01A	Fehler bei Erkennung der Betriebsart (8 / 9 Bit)
0xE0CC	Kommunikationsfehler MPI / Seriell
0xE100	MMC-Zugriffsfehler
0xE101	MMC-Fehler Filesystem
0xE102	MMC-Fehler FAT
0xE104	MMC Fehler beim Speichern
0xE200	MMC Schreiben beendet (Copy Ram2Rom)
0xE210	MMC Lesen beendet (Nachladen nach Urlöschen)
0xE300	Internes Flash Schreiben beendet (Copy RAM to ROM)
0xE310	Internes Flash Lesen beendet (Nachladen nach Batterieausfall)

4.15 Mit Testfunktionen Variablen steuern und beobachten

Übersicht	Zur Fehlersuche und zur Ausgabe von Variablenzuständen können Sie in Ihrem Siemens SIMATIC Manager unter dem Menüpunkt Test verschiedene Testfunktionen aufrufen.					
	 Mit der Testfunktion "Test → Beobachten" können die Signalzustände von Operanden und das VKE angezeigt werden. Mit der Testfunktion "Zielsystem → Variablen beobachten/steuern" können die Signalzustände vor Variablen geändert und angezeigt werden. 					
"Test > Beobachten"	Diese Testfunktion zeigt die aktuellen Signalzustände und das VKE der einzelnen Operanden während der Programmbearbeitung an. Es können außerdem Korrekturen am Programm durchgeführt werden.					
	 Die CPU muss bei der Testfunktion "Beobachten" in der Betriebsart RUN sein! 					

Die Statusbearbeitung kann durch Sprungbefehle oder Zeit- und Prozessalarme unterbrochen werden. Die Unterbrechung der Statusbearbeitung hat keinen Einfluss auf die Programmbearbeitung, sondern macht nur deutlich, dass die angezeigten Daten ab der Unterbrechungsstelle nicht mehr gültig sind. Die CPU hört an der Unterbrechungsstelle auf, Daten für die Statusanzeige zu sammeln und übergibt dem PG anstelle der noch benötigten Daten nur Daten mit dem Wert 0. Deshalb kann es bei Verwendung von Sprungbefehlen oder von Zeit- und Prozessalarmen vorkommen, dass in der Statusanzeige eines Bausteins während dieser Programmbearbeitung nur der Wert 0 angezeigt wird für:

- das Verknüpfungsergebnis VKE
- Status / AKKU 1
- AKKU 2
- Zustandsbyte
- absolute Speicheradresse SAZ. Hinter SAZ erscheint dann ein "?".

"Zielsystem ➔ Variablen beobachten/steuern" Diese Testfunktion gibt den Zustand eines beliebigen Operanden (Eingänge, Ausgänge, Merker, Datenwort, Zähler oder Zeiten) am Ende einer Programmbearbeitung an. Diese Informationen werden aus dem Prozessabbild der ausgesuchten Operanden entnommen. Während der "Bearbeitungskontrolle" oder in der Betriebsart STOP wird bei den Eingängen direkt die Peripherie eingelesen. Andernfalls wird nur das Prozessabbild der aufgerufenen Operanden angezeigt.

- Steuern von Ausgängen
 - Dadurch kann die Verdrahtung und die Funktionstüchtigkeit von Ausgabebaugruppen kontrolliert werden.
 - Auch ohne Steuerungsprogramm können Ausgänge auf den gewünschten Signalzustand eingestellt werden. Das Prozessabbild wird dabei nicht verändert, die Sperre der Ausgänge jedoch aufgehoben.
- Steuern von Variablen
 - Folgende Variablen können geändert werden: E, A, M, T, Z und D.
 - Unabhängig von der Betriebsart der CPU wird das Prozessabbild binärer und digitaler Operanden verändert.
 - In der Betriebsart RUN wird die Programmbearbeitung mit den geänderten Prozessvariablen ausgeführt. Im weiteren Programmablauf können sie jedoch ohne Rückmeldung wieder verändert werden.
 - Die Prozessvariablen werden asynchron zum Programmablauf gesteuert.

Grundlagen - Industrial Ethernet in der Automatisierung

5 Einsatz Ethernet-Kommunikation

5.1 Grundlagen - Industrial Ethernet in der Automatisierung

Übersicht

Der Informationsfluss in einem Unternehmen stellt sehr unterschiedliche Anforderungen an die eingesetzten Kommunikationssysteme. Je nach Unternehmensbereich hat ein Bussystem unterschiedlich viele Teilnehmer, es sind unterschiedlich große Datenmengen zu übertragen, die Übertragungsintervalle variieren. Aus diesem Grund greift man je nach Aufgabenstellung auf unterschiedliche Bussysteme zurück, die sich wiederum in verschiedene Klassen einteilen lassen. Eine Zuordnung verschiedener Bussysteme zu den Hierarchieebenen eines Unternehmens zeigt das folgende Modell:

Industrial Ethernet

Physikalisch ist Industrial Ethernet ein elektrisches Netz auf Basis einer geschirmten Twisted Pair Verkabelung oder ein optisches Netz auf Basis eines Lichtwellenleiters. Ethernet ist definiert durch den internationalen Standard IEEE 802.3.

Der Netzzugriff bei Industrial Ethernet entspricht dem in der IEEE 802.3 festgelegten CSMA/CD-Verfahren (**C**arrier **S**ense **M**ultiple **A**ccess/**C**ollision **D**etection - Mithören bei Mehrfachzugriff/ Kollisionserkennung):

- Jeder Teilnehmer "hört" ständig die Busleitung ab und empfängt die an ihn adressierten Sendungen.
- Ein Teilnehmer startet eine Sendung nur, wenn die Leitung frei ist.
- Starten zwei Teilnehmer gleichzeitig eine Sendung, so erkennen sie dies, stellen die Sendung ein und starten nach einer Zufallszeit erneut.
- Durch Einsatz von Switches wird eine kollisionsfreie Kommunikation zwischen den Teilnehmern gewährleistet.

5.2 Grundlagen - ISO/OSI-Schichtenmodell

Übersicht	Das ISO/OSI-Schichtenmodell basiert auf einem Vorschlag, der von der International Standards Organization (ISO) entwickelt wurde. Es stellt den ersten Schritt zur internationalen Standardisierung der ver- schiedenen Protokolle dar. Das Modell trägt den Namen ISO-OSI- Schichtenmodell. OSI steht für O pen S ystem Interconnection, die Kommunikation offener Systeme. Das ISO/OSI-Schichtenmodell ist keine Netzwerkarchitektur, da die genauen Dienste und Protokolle, die in jeder Schicht verwendet werden, nicht festgelegt sind. Sie finden in diesem Modell lediglich Informationen über die Aufgaben, welche die jeweilige Schicht zu erfüllen hat. Jedes offene Kommuni- kationssystem basiert heutzutage auf dem durch die Norm ISO 7498 beschriebenen ISO/OSI Referenzmodell. Das Referenzmodell struk- turiert Kommunikationssysteme in insgesamt 7 Schichten, denen jeweils Teilaufgaben in der Kommunikation zugeordnet sind. Dadurch wird die Komplexität der Kommunikation auf verschiedene Ebenen verteilt und somit eine größere Übersichtlichkeit erreicht.
	Folgende Schichten sind definiert:
	 Schicht 7 - Application Layer (Anwendung) Schicht 6 - Presentation Layer (Darstellung) Schicht 5 - Session Layer (Sitzung) Schicht 4 - Transport Layer (Transport) Schicht 3 - Network Layer (Netzwerk) Schicht 2 - Data Link Layer (Sicherung) Schicht 1 - Physical Layer (Bitübertragung)
	Je nach Komplexität der geforderten Übertragungsmechanismen kann sich ein Kommunikationssystem auf bestimmte Teilschichten beschränken.
Schicht 1 - Bitübertra- gungsschicht (physical layer)	Die Bitübertragungsschicht beschäftigt sich mit der Übertragung von Bits über einen Kommunikationskanal. Allgemein befasst sich diese Schicht mit den mechanischen, elektrischen und prozeduralen Schnittstellen und mit dem physikalischen Übertragungsmedium, das sich unterhalb der Bitübertragungsschicht befindet:
	 Wie viel Volt entsprechen einer logischen 0 bzw. 1? Wie lange muss die Spannung für ein Bit anliegen? Pinbelegung der verwendeten Schnittstelle.
Schicht 2 - Sicherungs- schicht (data link layer)	Diese Schicht hat die Aufgabe, die Übertragung von Bitstrings zwi- schen zwei Teilnehmern sicherzustellen. Dazu gehören die Erken- nung und Behebung bzw. Weitermeldung von Übertragungsfehlern, sowie die Flusskontrolle. Die Sicherungsschicht verwandelt die zu übertragenden Rohdaten in eine Datenreihe. Hier werden Rahmen- grenzen beim Sender eingefügt und beim Empfänger erkannt. Dies wird dadurch erreicht, dass am Anfang und am Ende eines Rahmens spezielle Bitmuster gesetzt werden. In der Sicherungsschicht wird häufig noch eine Flussregelung und eine Fehlererkennung integriert. Die Datensicherungsschicht ist in zwei Unterschichten geteilt, die LLC- und die MAC-Schicht. Die MAC (Media Access Control) ist die untere Schicht und steuert die Art, wie Sender einen einzigen Über- tragungskanal gemeinsam nutzen. Die LLC (Logical Link Control) ist die obere Schicht und stellt die Verbindung für die Übertragung der Datenrahmen von einem Gerät zum anderen her.

Grundlagen - Begriffe

Schicht 3 - Netzwerk- schicht (network layer)	Die Netzwerkschicht wird auch Vermittlungsschicht genannt. Die Auf- gabe dieser Schicht besteht darin, den Austausch von Binärdaten zwischen nicht direkt miteinander verbundenen Stationen zu steuern. Sie ist für den Ablauf der logischen Verknüpfungen von Schicht 2- Verbindungen zuständig. Dabei unterstützt diese Schicht die Identifi- zierung der einzelnen Netzwerkadressen und den Auf- bzw. Abbau von logischen Verbindungskanälen. IP basiert auf Schicht 3. Eine weitere Aufgabe der Schicht 3 besteht in der priorisierten Übertra- gung von Daten und die Fehlerbehandlung von Datenpaketen. IP (Internet Protokoll) basiert auf Schicht 3.
Schicht 4 - Transport- schicht (transport layer)	Die Aufgabe der Transportschicht besteht darin, Netzwerkstrukturen mit den Strukturen der höheren Schichten zu verbinden, indem sie Nachrichten der höheren Schichten in Segmente unterteilt und an die Netzwerkschicht weiterleitet. Hierbei wandelt die Transportschicht die Transportadressen in Netzwerkadressen um. Gebräuchliche Trans- portprotokolle sind: TCP, SPX, NWLink und NetBEUI.
Schicht 5 - Sitzungs- schicht (session layer)	Die Sitzungsschicht wird auch Kommunikationssteuerungsschicht genannt. Sie erleichtert die Kommunikation zwischen Service- Anbieter und Requestor durch Aufbau und Erhaltung der Verbindung, wenn das Transportsystem kurzzeitig ausgefallen ist. Auf dieser Ebene können logische Benutzer über mehrere Verbindungen gleich- zeitig kommunizieren. Fällt das Transportsystem aus, so ist es die Aufgabe, gegebenenfalls eine neue Verbindung aufzubauen. Darüber hinaus werden in dieser Schicht Methoden zur Steuerung und Syn- chronisation bereitgestellt.
Schicht 6 - Darstel- lungsschicht (presenta- tion layer)	Auf dieser Ebene werden die Darstellungsformen der Nachrichten behandelt, da bei verschiedenen Netzsystemen unterschiedliche Dar- stellungsformen benutzt werden. Die Aufgabe dieser Schicht besteht in der Konvertierung von Daten in ein beiderseitig akzeptiertes Format, damit diese auf den verschiedenen Systemen lesbar sind. Hier werden auch Kompressions-/Dekompressions- und Verschlüsse- lungs-/ Entschlüsselungsverfahren durchgeführt. Man bezeichnet diese Schicht auch als Dolmetscherdienst. Eine typische Anwendung dieser Schicht ist die Terminalemulation.
Schicht 7 - Anwen- dungsschicht (applica- tion layer)	Die Anwendungsschicht stellt sich als Bindeglied zwischen der eigentlichen Benutzeranwendung und dem Netzwerk dar. Sowohl die Netzwerk-Services wie Datei-, Druck-, Nachrichten-, Datenbank- und Anwendungs-Service als auch die zugehörigen Regeln gehören in den Aufgabenbereich dieser Schicht. Diese Schicht setzt sich aus einer Reihe von Protokollen zusammen, die entsprechend den wach- senden Anforderungen der Benutzer ständig erweitert werden.

5.3 Grundlagen - Begriffe

Netzwerk (LAN) Ein Netzwerk bzw. LAN (Local Area Network) verbindet verschiedene Netzwerkstationen so, dass diese miteinander kommunizieren können. Netzwerkstationen können PCs, IPCs, TCP/IP-Baugruppen, etc. sein. Die Netzwerkstationen sind, durch einen Mindestabstand getrennt, mit dem Netzwerkkabel verbunden. Die Netzwerkstationen und das Netzwerkkabel zusammen bilden ein Gesamtsegment. Alle Segmente eines Netzwerks bilden das Ethernet (Physik eines Netzwerks).

Twisted Pair	Früher gab es das Triaxial- (Yellow Cable) oder Thin Ethernet-Kabel (Cheapernet). Mittlerweile hat sich aber aufgrund der Störfestigkeit das Twisted Pair Netzwerkkabel durchgesetzt. Die CPU hat einen Twisted-Pair-Anschluss. Das Twisted Pair Kabel besteht aus 8 Adern, die paarweise miteinander verdrillt sind. Aufgrund der Verdrillung ist dieses System nicht so störanfällig wie frühere Koaxialnetze. Ver- wenden Sie für die Vernetzung Twisted Pair Kabel, die mindestens der Kategorie 5 entsprechen. Abweichend von den beiden Ethernet- Koaxialnetzen, die auf einer Bus-Topologie aufbauen, bildet Twisted Pair ein Punkt-zu-Punkt-Kabelschema. Das hiermit aufzubauende Netz stellt eine Stern-Topologie dar. Jede Station ist einzeln direkt mit dem Sternkoppler (Hub/Switch) zu einem Ethernet verbunden.
Hub (Repeater)	Ein Hub ist ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Seine Aufgabe ist dabei, die Signale in beide Rich- tungen zu regenerieren und zu verstärken. Gleichzeitig muss er in der Lage sein, segmentübergreifende Kollisionen zu erkennen, zu verar- beiten und weiter zu geben. Er kann nicht im Sinne einer eigenen Netzwerkadresse angesprochen werden, da er von den angeschlos- senen Stationen nicht registriert wird. Er bietet Möglichkeiten zum Anschluss an Ethernet oder zu einem anderen Hub bzw. Switch.
Switch	Ein Switch ist ebenfalls ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Mehrere Stationen bzw. Hubs werden über einen Switch verbunden. Diese können dann, ohne das restliche Netzwerk zu belasten, über den Switch miteinander kommunizieren. Eine intelligente Hardware analysiert für jeden Port in einem Switch die eingehenden Telegramme und leitet diese kollisionsfrei direkt an die Zielstationen weiter, die am Switch angeschlossen sind. Ein Switch sorgt für die Optimierung der Bandbreite in jedem einzeln angeschlossenen Segment eines Netzes. Switches ermöglichen exklusiv nach Bedarf wechselnde Verbindungen zwischen ange- schlossenen Segmenten eines Netzes.

5.4 Grundlagen - Protokolle

Übersicht

In Protokollen ist ein Satz an Vorschriften oder Standards definiert, der es Kommunikationssystemen ermöglicht, Verbindungen herzustellen und Informationen möglichst fehlerfrei auszutauschen. Ein allgemein anerkanntes Protokoll für die Standardisierung der kompletten Kommunikation stellt das ISO/OSI-Schichtenmodell dar. & Kapitel 5.2 "Grundlagen - ISO/OSI-Schichtenmodell" auf Seite 63

Folgende Protokolle kommen zum Einsatz:

- Kommunikationsverbindungen
 - TCP/IP
 - UDP
 - RFC1006 (ISO-ON-TCP)

Grundlagen - Protokolle

TCP/IP

TCP/IP-Protokolle stehen auf allen derzeit bedeutenden Systemen zur Verfügung. Dies gilt am unteren Ende für einfache PCs, über die typischen Mini-Rechner, bis hinauf zu Großrechnern. Durch die weite Verbreitung von Internetzugängen und -anschlüssen wird TCP/IP sehr häufig für den Aufbau heterogener Systemverbunde verwendet. Hinter TCP/IP (Transmission Control Protocol / Internet Protocol) verbirgt sich eine ganze Familie von Protokollen und Funktionen. TCP und IP sind nur zwei der für den Aufbau einer vollständigen Architektur erforderlichen Protokolle.

- TCP/IP
 - Die Anwendungsschicht stellt Programme wie "FTP" und "Telnet" auf PC-Seite zur Verfügung. Die Anwendungsschicht des Ethernet CP ist mit dem Anwenderprogramm unter Verwendung der Standardhantierungsbausteine definiert. Diese Anwendungsprogramme nutzen für den Datenaustausch die Transportschicht mit den Protokollen TCP oder UDP, die wiederum mit dem IP-Protokoll der Internetschicht kommunizieren.
 - Zur Adressierung werden neben der IP-Adresse Ports verwendet. Eine Port-Adresse sollte im Bereich 2000...65535 liegen.
 - Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf SPS-Seite die VIPA-Hantierungsbausteine AG SEND (FC 5) und AG RECV (FC 6) erforderlich
- IP
 - IP deckt die Netzwerkschicht (Schicht 3) des ISO/OSI-Schichtmodells ab.
 - Die Aufgabe des IP besteht darin, Datenpakete von einem Rechner über mehrere Rechner hinweg zum Empfänger zu senden. Diese Datenpakete sind sogenannte Datagramme. Das IP gewährleistet weder die richtige Reihenfolge der Datagramme, noch die Ablieferung beim Empfänger.
 - Zur eindeutigen Unterscheidung zwischen Sender und Empfänger kommen 32Bit-Adressen (IP-Adressen) zum Einsatz, die bei IPv4 in vier Oktetts (genau 8Bit) geschrieben werden, z.B. 172.16.192.11. Diese Internetadressen werden weltweit eindeutig vergeben, so dass jeder Anwender von TCP/IP mit allen anderen TCP/IP Anwendern kommunizieren kann.
 - Ein Teil der Adresse spezifiziert das Netzwerk, der Rest dient zur Identifizierung der Rechner im Netzwerk. Die Grenze zwischen Netzwerkanteil und Host-Anteil ist fließend und hängt von der Größe des Netzwerkes ab.
 - Um IP-Adressen zu sparen, werden sogenannte NAT-Router eingesetzt, die eine einzige offizielle IP-Adresse besitzen und das Netzwerk hinter diesem Rechner abschotten. Somit können im privaten Netzwerk dann beliebige IP-Adressen vergeben werden.
- TCP
 - TCP setzt direkt auf IP auf, somit deckt das TCP die Transportschicht (Schicht 4) auf dem ISO/OSI-Schichtenmodell ab.
 - TCP ist ein verbindungsorientiertes End-to-End-Protokoll und dient zur logischen Verbindung zwischen zwei Partnern.
 - TCP gewährleistet eine folgerichtige und zuverlässige Datenübertragung. Hierzu ist ein relativ großer Protokoll-Overhead erforderlich, der folglich die Übertragung verlangsamt.
 - Jedes Datagramm wird mit einem mindestens 20Byte langen Header versehen. In diesem Header befindet sich auch eine Folgenummer, mit der die richtige Reihenfolge erkannt wird. So können in einem Netzwerkverbund die einzelnen Datagramme auf unterschiedlichen Wegen zum Ziel gelangen.

- Bei TCP-Verbindungen wird die Gesamtdatenlänge nicht übermittelt. Aus diesem Grund muss der Empfänger wissen, wie viele Bytes zu einer Nachricht gehören.
 - Zur Übertragung von Daten mit variabler Länge können Sie die Längenangabe den Nutzdaten voranstellen und diese Längenangabe entsprechend auf der Gegenseite auswerten.

UDP (User Datagramm Protocol) ist ein verbindungsloses Transportprotokoll. Es wurde im RFC768 (Request for Comment) definiert. Im Vergleich zu TCP hat es wesentlich weniger Merkmale. Die Adressierung erfolgt durch Portnummern. UDP ist ein schnelles ungesichertes Protokoll, da es sich weder um fehlende Datenpakete kümmert, noch um die Reihenfolge der Pakete.

ISO-on-TCP RFC1006 Da der TCP-Transportdienst streamorientiert ist, bedeutet dies, dass einzelne vom Anwender zusammengestellte Datenpakete nicht unbedingt in der gleichen Paketierung beim Teilnehmer ankommen. Je nach Datenvolumen können Pakete zwar in der gleichen Reihenfolge aber anders paketiert ankommen, so dass der Empfänger die einzelnen Paketgrenzen nicht mehr erkennen kann. Beispielsweise werden 2x 10Byte-Pakete geschickt, die auf der Gegenseite als 20Byte-Paket ankommen. Aber gerade die richtige Paketierung ist für die meisten Anwendungen unerlässlich. Dies bedeutet, dass oberhalb von TCP ein zusätzliches Protokoll erforderlich ist. Diese Aufgabe erfüllt der Protokollaufsatz RFC1006 (ISO-on-TCP).

- RFC1006 beschreibt die Arbeitsweise einer ISO Transportschnittstelle (ISO 8072) auf der Basis des Transportinterfaces TCP (RFC793).
- Das dem RFC1006 zugrunde liegende Protokoll ist in seinen wesentlichen Teilen identisch zu TP0 (Transport Protokoll, Class 0) in ISO 8073.
- Da RFC1006 als Protokollaufsatz zu TCP gefahren wird, erfolgt die Dekodierung im Datenteil des TCP-Pakets.
- Im Gegensatz zu TCP wird hier der Empfang eines Telegramms bestätigt.
- Zur Adressierung werden neben der IP-Adresse anstelle von Ports TSAPs verwendet. Die TSAP-Länge kann 1 ... 16 Zeichen betragen. Die Eingabe kann im ASCII- oder Hex-Format erfolgen.
- Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG_RECV (FC 6) erforderlich.
- Im Gegensatz zu TCP können über RFC1006 unterschiedliche Telegrammlängen empfangen werden.
- 5.5 Grundlagen IP-Adresse und Subnetz

Aufbau IP-Adresse

Unterstützt wird ausschließlich IPv4. Unter IPv4 ist die IP-Adresse eine 32-Bit-Adresse, die innerhalb des Netzes eindeutig sein muss und sich aus 4 Zahlen zusammensetzt, die jeweils durch einen Punkt getrennt sind. Jede IP-Adresse besteht aus einer *Net-ID* und *Host-ID* und hat folgenden

Aufbau: XXX . XXX . XXX . XXX

Wertebereich: 000.000.000.000 bis 255.255.255.255

Grundlagen - IP-Adresse und Subnetz

Net-ID, Host-ID	Die Net work-ID kennzeichnet ein Netz bzw. einen Netzbetreiber, der das Netz administriert. Über die Host-ID werden Netzverbindungen eines Teilnehmers (Hosts) zu diesem Netz gekennzeichnet.									
Subnetz-Maske	Die Host-ID kann mittels bitweiser UND-Verknüpfung mit der Sub- netz-Maske weiter aufgeteilt werden, in eine Subnet-ID und eine neue Host-ID. Derjenige Bereich der ursprünglichen Host-ID, welcher von Einsen der Subnetz-Maske überstrichen wird, wird zur Subnet-ID, der Rest ist die neue Host-ID.									
	Subnetz-Maske					binär alle "1"			binär alle "0"	
	IPv4 Adres	sse				Net-ID	Hos	Host-ID		
	Subnetz-N Adresse	laske	e und	IPv4		Net-ID	Sub	onet-ID	neue Host- ID	
Adresse bei Erstinbet- riebnahme	Bei der Erstinbetriebnahme der CPU besitzen der Ethernet-PG/OP- Kanal und der CP 243 keine IP-Adresse.								et-PG/OP-	
	So weisen Sie dem Ethernet-PG/OP-Kanal IP-Adress-Daten zu									
	So weisen 243 " auf S	Sie d eite 7	lem (73.	CP 24	3 IP-/	Adress-Dater	ı zu	& "Proje	ktierung CP	
Adress-Klassen	Für IPv4-A E), die alle	dress einhe	en g eitlich	ibt es 1 4By	fünf / te = 3	Adressformat 2Bit lang sind	te (K d.	ílasse A I	ois Klasse	
	Klasse A	0	Net	work-	ID (1+	-7bit)	H	lost-ID (2	24bit)	
	Klasse B	10	N	letwo	rk-ID ((2+14bit)		Host-ID	(16bit)	
	Klasse C	110		Net	work-l	D (3+21bit)		Hos	t-ID (8bit)	
	Klasse D	111	0	Ν	lultica	st Gruppe				
	Klasse E	111	10		Rese	erviert				
	Die Klassen A, B und C werden für Individualadressen genutzt, die Klasse D für Multicast-Adressen und die Klasse E ist für besondere Zwecke reserviert. Die Adressformate der 3 Klassen A, B, C unter- scheiden sich lediglich dadurch, dass Network-ID und Host-ID ver- schieden lang sind.							enutzt, die besondere , C unter- st-ID ver-		
Private IP Netze	Diese Adressen können von mehreren Organisationen als Netz-ID gemeinsam benutzt werden, ohne dass Konflikte auftreten, da diese IP-Adressen weder im Internet vergeben noch ins Internet geroutet werden. Zur Bildung privater IP-Netze sind gemäß RFC1597/1918 folgende Adressbereiche vorgesehen:									

Grundlagen - MAC-Adresse und TSAP

Netzwerk Klasse	von IP	bis IP	Standard Sub- netz-Maske
А	10. <u>0.0.0</u>	10. <u>255.255.255</u>	255. <u>0.0.0</u>
В	172.16. <u>0.0</u>	172.31. <u>255.255</u>	255.255. <u>0.0</u>
С	192.168.0. <u>0</u>	192.168.255. <u>255</u>	255.255.255. <u>0</u>

(Die Host-ID ist jeweils unterstrichen.)

Netzes belegt.)

Reservierte Host-IDs

Einige Host-IDs sind für spezielle Zwecke reserviert.

Host-ID = "0"	Identifier dieses Netzwerks, reserviert!	
Host-ID = maximal (binär kom-	Broadcast-Adresse dieses Netz-	
plett "1")	werks	
 Wählen Sie niemals eine	IP-Adresse mit Host-ID=0 oder	
Host-ID=maximal! (z.B. is	st für Klasse B mit Subnetz-	
Maske = 255.255.0.0 die	"172.16.0.0" reserviert und die	
"172.16.255.255" als loka	ale Broadcast-Adresse dieses	

5.6 Grundlagen - MAC-Adresse und TSAP

MAC-Adresse	Für jeden CP ist eine eindeutige MAC-Adresse (M edia A ccess C ontrol) erforderlich. In der Regel ist die MAC-Adresse vom Hersteller auf die Baugruppe aufgedruckt und ist bei der Projektierung des CPs einzugeben. Die MAC-Adresse hat eine Länge von 6Byte. Im Auslieferungszustand spezifizieren die ersten drei Byte den Hersteller. Diese Bytes werden vom IEEE-Komitee vergeben. Die letzte 3 Bytes können vom Hersteller vergeben werden. In einem Netz dürfen nicht mehrere Stationen mit der gleichen MAC-Adresse existieren. Sie können jederzeit die MAC-Adresse ändern. Eine gültige MAC-Adresse erhalten Sie von Ihrem Netzwerkadministrator.	
	 Broadcast-Adresse Die MAC-Adresse, bei der alle Bits auf 1 gesetzt sind, lautet: FF-FF-FF-FF-FF-FF Diese Adresse wird als Broadcast-Adresse verwendet und adressiert alle Teilnehmer im Netz. Adresse bei Erstinbetriebnahme Jeder CP einer VIPA-CPU besitzt immer eine eindeutige MAC- Adresse. Diese finden Sie auf einem Aufkleber unterhalb der Frontklappe. 	
TSAP	TSAP steht für T ransport S ervice A ccess P oint. ISO-Transport-Ver- bindungen unterstützen TSAP-Längen von 116Byte. Sie können den TSAP im ASCII-Format oder hexadezimal eingeben.	

Schnelleinstieg

Adressparameter	Teilnehmer A				Teilnehmer B
	ferner TSAP	\rightarrow	ISO-Transport-	\rightarrow	lokaler TSAP
	lokaler TSAP	÷	Verbindung	÷	ferner TSAP
	MAC-Adresse A				MAC-Adresse B

Eine ISO-Transport-Verbindung wird durch den lokalen und fernen Verbindungsendpunkt spezifiziert. Die TSAPs einer ISO-Transport-Verbindung müssen wie folgt übereinstimmen:

- Ferner TSAP (im CP) = lokaler TSAP (in Ziel-Station)
- Lokaler TSAP (im CP) = ferner TSAP (in Ziel-Station)

5.7 Schnelleinstieg

Übersicht

Bei der Erstinbetriebnahme bzw. nach dem Urlöschen mit erneutem PowerON der CPU besitzt der CP 243 <u>keine</u> IP-Adresse. Dieser ist lediglich über seine MAC-Adresse erreichbar. Mittels der MAC-Adressen, die sich auf Aufkleber seitlich am Modul befindet können Sie dem CP IP-Adress-Daten zuweisen. Die Zuweisung erfolgt hier direkt über die Hardware-Konfiguration im Siemens SIMATIC Manager.

Schritte der Projektierung

Die Projektierung des CP 243 sollte nach folgender Vorgehensweise erfolgen:

1. Inbetriebnahme und Urtaufe

(Zuweisung von IP-Adress-Daten)

2. Hardware-Konfiguration - CPU

3. Kommunikationsverbindungen projektieren

(Projektierung erfolgt über Siemens NetPro, die Kommunikation über VIPA Hantierungsbausteine)

4. SPS-Programmierung über Anwender-Programm (Verbindung zur SPS).

5. Transfer des Gesamtprojekts in die CPU

Informationen zum Projekt-Transfer finden Sie im Teil "Einsatz CPU..." unter "Projekt transferieren".

Inbetriebnahme und Urtaufe

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, ist die CPU 215-2BT16 von VIPA als

CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.)

zu projektieren!

Der CP-Teil der CPU 215-2BT16 ist virtuell als CP343-1 (343-1EX11) von Siemens auf Steckplatz 4 zu projektieren. Damit die System 200V-Module gezielt angesprochen werden können, sind diese im Hardware-Konfigurator von Siemens in Form eines virtuellen PROFIBUS-Systems zu projektieren. Hierbei können Sie durch Einbindung der GSD-Datei VIPA_21X.GSD auf den Funktionsumfang der System 200V Module zurückgreifen.

5.8 Inbetriebnahme und Urtaufe

Montage und Inbetriebnahme

- **1.** Bauen Sie Ihr System 200V mit Ihrer CPU auf.
- 2. Verdrahten Sie das System, indem Sie die Leitungen für Spannungsversorgung und Signale anschließen.
- 3. Binden Sie Ihren CP 243 an Ethernet an.
- **4.** Schalten Sie die Spannungsversorgung ein.
 - ⇒ Nach kurzer Hochlaufzeit befindet sich der CP im Leerlauf. Bei der Erstinbetriebnahme bzw. nach dem Urlöschen der CPU besitzen der CP 243 und der Ethernet-PG/OP-Kanal keine IP-Adresse.

IP-Adress-Parameter zuweisen

Bitte beachten Sie, dass diese Funktionalität ab der CP-Firmware-Version 1.7.4 unterstützt wird.

Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator. Die Zuweisung der IP-Adress-Daten erfolgt online im Siemens SIMATIC Manager ab Version V 5.3 & SP3 nach folgender Vorgehensweise:

- 1. Starten Sie den Siemens SIMATIC Manager und stellen Sie über "Extras → PG/PC-Schnittstelle einstellen" auf "TCP/IP -> Netzwerkkarte" ein.
- 2. ► Öffnen Sie mit "Zielsystem → Ethernet-Teilnehmer bearbeiten" das gleichnamige Dialogfenster.
- 3. Benutzen Sie die Schaltfläche [Durchsuchen], um die über MAC-Adresse erreichbaren Geräte zu ermitteln oder tragen Sie die MAC-Adresse ein. Die MAC-Adresse finden Sie auf dem 2. Aufkleber unter der Frontklappe der CPU.
- **4.** Wählen Sie ggf. bei der Netzwerksuche aus der Liste die Baugruppe mit der Ihnen bekannten MAC-Adresse aus.

Hardware-Konfiguration - CPU

- 5. Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, Subnetz-Maske und den Netzübergang eintragen. Sie können aber auch über einen DHCP-Server eine IP-Adresse beziehen. Hierzu ist dem DHCP-Server je nach gewählter Option die MAC-Adresse, der Gerätename oder die hier eingebbare Client-ID zu übermitteln. Die Client-ID ist eine Zeichenfolge aus maximal 63 Zeichen. Hierbei dürfen folgende Zeichen verwendet werden: Bindestrich "-", 0-9, a-z, A-Z
- **6.** Bestätigen Sie mit [IP-Konfiguration zuweisen] Ihre Eingabe.

Direkt nach der Zuweisung ist der CP 243 über die angegebenen IP-Adress-Daten online erreichbar.

Da die hier zugewiesenen IP-Adress-Daten mit PowerOFF wieder gelöscht werden, müssen Sie diese mittels der nachfolgend aufgeführten Hardware-Konfiguration in Ihr Projekt übernehmen und übertragen.

5.9 Hardware-Konfiguration - CPU

Übersicht	Zur Projektierung der CPU 215-2BT16 und der am VIPA-Bus neben der CPU befindlichen System 200V Module verwenden Sie den Hard- ware-Konfigurator von Siemens. Damit die direkt gesteckten Periphe- riemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden. Die Adresszu- ordnung und die Parametrierung der Module erfolgt im Siemens SIMATIC Manager in Form eines virtuellen PROFIBUS-Systems. Da die PROFIBUS-Schnittstelle auch softwareseitig standardisiert ist, können wir auf diesem Weg gewährleisten, dass über die Einbindung einer GSD-Datei die Funktionalität in Verbindung mit dem Siemens SIMATIC Manager jederzeit gegeben ist. Ihr Projekt wird über die MPI-Schnittstelle in Ihre CPU übertragen.			
Voraussetzung	 Folgende Voraussetzungen müssen für die Projektierung erfüllt sein Siemens SIMATIC Manager auf PC bzw. PG installiert GSD-Dateien in Hardware-Konfigurator von Siemens eingebunden Serielle Verbindung zur CPU (z.B. MPI-Adapter) 			
	 Für die Projektierung der CPU werden fundierte Kennt- nisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator von Siemens vorausge- setzt! 			
GSD-Datei einbinden				
	 Gehen Sie auf www.vipa.com > Service > Download > PRO- FIBUS GSD-Dateien und laden Sie die Datei System_100V _200V_Vxxx.zip. 			
	2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis. Die vipa_21x.gsd (deutsch) bzw. vipa_21x.gse (englisch) befinden			

sich im Verzeichnis CPU21x.
- **3.** Starten Sie den Hardware-Konfigurator von Siemens und schließen Sie alle Projekte.
- **4.** Gehen Sie auf **Extras** > Neue GSD-Datei installieren.
- 5. Navigieren Sie in das Verzeichnis CPU21x und geben Sie die entsprechende Datei vipa_21x.gsd (deutsch) oder vipa_21x.gse (englisch) an.
 - ⇒ Die Module des System 200V von VIPA befinden sich im Hardwarekatalog unter PROFIBUS-DP \ Weitere Feldgeräte \ I/O \ VIPA_System_200V.

Vorgehensweise

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- **1.** Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- **2.** Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf Steckplatz 2 folgende Siemens CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.)
- **4.** Legen Sie für das System 200V ein neues PROFIBUS-Subnetz an.
- **5.** Binden Sie an das Subnetz das Slave-System "VIPA_CPU21x" mit der **PROFIBUS-Adresse 1** an.
 - ⇒ Nach Einbindung der vipa_21x.gsd finden Sie das Slave-System im Hardware-Katalog unter PROFIBUS DP > Weitere Feldgeräte > IO > VIPA_System_200V.
- 6. Platzieren Sie immer auf dem 1. Steckplatz die entsprechende CPU 215-2BT16, indem Sie diese dem Hardware-Katalog entnehmen.

5.10 Projektierung CP 243

Da sich der CP-Teil der CPU von VIPA in der Projektierung gleich verhält wie der CP343-1 von Siemens, projektieren Sie unterhalb der CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.) auf Steckplatz 4 einen virtuellen CP343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \ CP 343-1 \ 6GK7 343-1EX11 0XE0).

Kommunikationsverbindungen projektieren > Übersicht

Parametrierung der IP-Adress-Daten

- 1. Durch Doppelklick auf den CP öffnen Sie den Dialog des CPs.
- 2. Geben Sie unter "Allgemein" einen Gerätenamen an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.
- 3. Geben Sie für den CP unter [Eigenschaften] IP-Adresse, Subnet-Maske und Gateway an und wählen Sie das gewünschte Subnetz aus.
- 5.11 Kommunikationsverbindungen projektieren

Übersicht 5.11.1

Eigenschaften einer

dung

Die Projektierung von Verbindungen, d.h. die "Vernetzung" zwischen den Stationen erfolgt in NetPro von Siemens. NetPro ist eine grafische Benutzeroberfläche zur Vernetzung von Stationen. Eine Kommunikationsverbindung ermöglicht die programmgesteuerte Kommunikation zwischen zwei Teilnehmern am Industrial Ethernet. Die Kommunikationspartner können hierbei im selben Proiekt oder - bei Multiprojekten - in den zugehörigen Teilprojekten verteilt angeordnet sein. Kommunikationsverbindungen zu Partner außerhalb eines Projekts werden über das Objekt "In unbekanntem Projekt" oder mittels Stellvertreterobjekten wie "Andere Stationen" oder Siemens "SIMATIC S5 Station" projektiert. Die Kommunikation steuern Sie durch Einsatz von VIPA Hantierungsbausteinen in Ihrem Anwenderprogramm. Für den Einsatz dieser Bausteine sind immer projektierte Kommunikationsverbindungen auf der aktiven Seite erforderlich.

Folgende Eigenschaften zeichnen eine Kommunikationsverbindung Kommunikationsverbinaus:

- Eine Station führt immer einen aktiven Verbindungsaufbau durch.
- Bidirektionaler Datentransfer (Senden und Empfangen auf einer Verbindung).
- Beide Teilnehmer sind gleichberechtigt, d.h. jeder Teilnehmer kann ereignisabhängig den Sende- bzw. Empfangsvorgang anstoßen.
- Mit Ausnahme der UDP-Verbindung wird bei einer Kommunikati-onsverbindung die Adresse des Kommunikationspartners über die Projektierung festgelegt. Hierbei ist immer von einer Station der Verbindungsaufbau aktiv durchzuführen.

Kommunikationsverbindungen projektieren> Siemens NetPro

Voraussetzung

- Bei der Hardware-Konfiguration wurden dem CP über die Eigenschaften IP-Adress-Daten zugewiesen.

Alle Stationen außerhalb des aktuellen Projekts müssen mit Stellvertreterobjekten, wie z.B. Siemens "SIMATIC S5" oder "Andere Station" oder mit dem Objekt "In unbekanntem Projekt" projektiert sein. Sie können aber auch beim Anlegen einer Verbindung den Partnertyp "unspezifiziert" anwählen und die erforderlichen Remote-Parameter im Verbindungsdialog direkt angeben.

5.11.2 Siemens NetPro

Arbeitsumgebung von NetPro Zur Projektierung von Verbindungen werden fundierte Kenntnisse im Umgang mit NetPro von Siemens vorausgesetzt! Nachfolgend soll lediglich der grundsätzliche Einsatz von NetPro gezeigt werden. Nähre Informationen zu NetPro finden Sie in der zugehörigen Online-Hilfe bzw. Dokumentation. NetPro starten Sie, indem Sie im Siemens SIMATIC Manager auf ein "Netz" klicken oder innerhalb Ihrer CPU auf "Verbindungen". Die Arbeitsumgebung von NetPro hat folgenden Aufbau:

Einsatz Ethernet-Kommunikation

Kommunikationsverbindungen projektieren > Siemens NetPro

- 1 *Grafische Netzansicht:* Hier werden alle Stationen und Netzwerke in einer grafischen Ansicht dargestellt. Durch Anwahl der einzelnen Komponenten können Sie auf die jeweiligen Eigenschaften zugreifen und ändern.
- 2 Netzobjekte: In diesem Bereich werden alle verfügbaren Netzobjekte in einer Verzeichnisstruktur dargestellt. Durch Ziehen eines gewünschten Objekts in die Netzansicht können Sie weitere Netzobjekte einbinden und im Hardware-Konfigurator öffnen.
- 3 Verbindungstabelle: In der Verbindungstabelle sind alle Verbindungen tabellarisch aufgelistet. Diese Liste wird nur eingeblendet, wenn Sie die CPU einer verbindungsfähigen Baugruppe angewählt haben. In dieser Tabelle können Sie mit dem gleichnamigen Befehl neue Verbindungen einfügen.

SPS-Stationen

Für jede SPS-Station und ihre Komponente haben Sie folgende grafische Darstellung. Durch Anwahl der einzelnen Komponenten werden Ihnen im Kontext-Menü verschiedene Funktionen zu Verfügung gestellt:

- 1 Station: Dies umfasst eine SPS-Station mit Rack, CPU und Kommunikationskomponenten. Über das Kontext-Menü haben Sie die Möglichkeit eine aus den Netzobjekten eingefügte Station im Hardware-Konfigurator mit den entsprechenden Komponenten zu projektieren. Nach der Rückkehr in NetPro werden die neu projektierten Komponenten dargestellt.
- 2 *CPU:* Durch Klick auf die CPU wird die Verbindungstabelle angezeigt. In der Verbindungstabelle sind alle Verbindungen aufgelistet, die für die CPU projektiert sind.
- 3 Interne Kommunikationskomponenten: Hier sind die Kommunikationskomponenten aufgeführt, die sich in Ihrer CPU befinden. Da die NET-CPU als Siemens-CPU projektiert wird, wird bei den internen Komponenten kein CP angezeigt. Aus diesem Grund ist der CP, der sich in der NET-CPU befindet, als externer CP hinter den reell gesteckten Modulen zu projektieren. Die CPs werden dann auch in NetPro als externe CPs (4, 5) in der Station eingeblendet.
- 4 *Ethernet-PG/OP-Kanal:* In der Hardware-Konfiguration ist der interne Ethernet-PG/OP-Kanal immer als externer CP zu projektieren. Dieser CP dient ausschließlich der PG/OP-Kommunikation. Produktiv-Verbindungen sind nicht möglich.
- 5 *CP 243* In der Hardware-Konfiguration ist der CP 243 als Siemens CP 343-1 zu projektieren.

Kommunikationsverbindungen projektieren> Siemens NetPro

Stationen vernetzen

NetPro bietet Ihnen die Möglichkeit die kommunizierenden Stationen zu vernetzen. Die Vernetzung können Sie über die Eigenschaften in der Hardware-Konfiguration durchführen oder grafisch unter NetPro. Gehen Sie hierzu mit der Maus auf die farbliche Netzmarkierung des entsprechenden CPs und ziehen Sie diese auf das zuzuordnende Netz. Daraufhin wird Ihr CP über eine Linie mit dem gewünschten Netz verbunden

Kommunikationsverbindungen projektieren > Siemens NetPro

Verbindungen projektieren

- 1. Zur Projektierung von Verbindungen blenden Sie die Verbindungsliste ein, indem Sie die entsprechende CPU anwählen. Öffnen Sie *"Kontextmenü* → *Neue Verbindung einfügen"*:
 - Verbindungspartner (Station Gegenseite)
 - Es öffnet sich ein Dialogfenster in dem Sie den Verbindungspartner auswählen und den Verbindungstyp einstellen können.
 - Spezifizierte Verbindungspartner
 - Jede im Siemens SIMATIC Manager projektierte Station wird in die Liste der Verbindungspartner aufgenommen.
 - Durch Angabe einer IP-Adresse und Subnetz-Maske sind diese Stationen eindeutig spezifiziert.
 - Unspezifizierte Verbindungspartner
 - Hier kann sich der Verbindungspartner im aktuellen Projekt oder in einem unbekannten Projekt befinden.
 - Verbindungs-Aufträge in ein unbekanntes Projekt sind über einen eindeutigen Verbindungs-Namen zu definieren, der für die Projekte in beiden Stationen zu verwenden ist.
 - Aufgrund dieser Zuordnung bleibt die Verbindung selbst unspezifiziert.
 - Alle Broadcast-Teilnehmer
 - Ausschließlich bei UDP-Verbindungen können Sie hier an alle erreichbaren Broadcast-Teilnehmer senden.
 - Der Empfang von Nutzdaten ist nicht möglich.
 - Über <u>einen</u> Port und <u>eine</u> Broadcast-Adresse bei Sender und Empfänger werden die Broadcast-Teilnehmer spezifiziert.
 - Standardmäßig werden Broadcasts, die ausschließlich der Ethernet-Kommunikation dienen, wie z.B. ARP-Requests (Suche MAC <> IP-Adresse), empfangen und entsprechend bearbeitet.
 - Zur Identifikation der Broadcast-Teilnehmer im Netz ist bei der Projektierung einer Broadcast-Verbindung eine gültige Broadcast-Adresse als Partner-IP vorzugeben.
 - Zusätzlich zur Broadcast-Adresse müssen Sie für Sender und Empfänger einen gemeinsamen Port angeben

Kommunikationsverbindungen projektieren> Siemens NetPro

- Alle Multicast-Teilnehmer
 - Durch Anwahl von "Alle Multicast-Teilnehmer" bestimmen Sie, dass UDP-Telegramme an Teilnehmern einer Multicast-Gruppe zu senden bzw. von diesen zu empfangen sind.
 - Im Gegensatz zu Broadcast ist hier der Empfang möglich.
 - Durch Angabe <u>eines</u> Ports und <u>einer</u> Multicast-Gruppe für Sender und Empfänger sind die Multicast-Teilnehmer zu spezifizieren. Die maximale Anzahl der Multicast-Kreise, die vom CP unterstützt werden, ist identisch mit der maximalen Anzahl an Verbindungen.
- Verbindungstypen
 Für die Kommunikation stehen Ihnen folgende Verbindungstypen zur Verfügung:
 - Siemens S7-Verbindung, Send/Receive-Verbindungen (TCP, ISO-on-TCP und ISO-Transport) zur gesicherten Datenübertragung von Datenblöcke zwischen zwei Ethernet-Teilnehmern
 - UDP zur ungesicherten Datenübertragung von Datenblöcken zwischen zwei Ethernet-Teilnehmer
- **2.** Wählen Sie den Verbindungspartner und den Verbindungstyp und klicken Sie auf [OK].
 - Sofern aktiviert, öffnet sich ein Eigenschaften-Dialog der entsprechenden Verbindung als Bindeglied zu Ihrem SPS-Anwenderprogramm.

Neue Verbindung einfügen
Verbindungspartner
Im Projekt
Projekt: Connections Sation: SIMATIC 300 Baugruppe: CPU
Verbindung
Typ: S7-Verbindung
OK Übernehmen Abrechen

3. Nachdem Sie auf diese Weise alle Verbindungen projektiert haben, können Sie Ihr Projekt "Speichern und übersetzen" und NetPro beenden.

Kommunikationsverbindungen projektieren > Verbindungstyp - Send/Receive

5.11.3 Verbindungstyp - Send/Receive

Send/Receive-Verbin	_
dungen	

Für diese Verbindungen sind für den Datenaustausch auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG_RECV (FC 6) zu verwenden.

Send/Receive-Verbindungen umfassen folgende Verbindungen:

- TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)
- ISO-on-TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)
- ISO-Transport (SEND-RECEIVE, FETCH-WRITE PASSIV)
- UDP (SEND-RECEIVE)

Folgende Parameter definieren einen Verbindungsendpunkt:

Station A				Station B
ferner Port	\rightarrow	TCP-	\rightarrow	lokaler Port
lokaler Port	÷	Verbindung	÷	ferner Port
IP-Adresse A				IP-Adresse B
Station A				Station B
ferner TSAP	\rightarrow	ISO-TCP-	\rightarrow	lokaler TSAP
lokaler TSAP	÷	Verbindung	←	ferner TSAP
IP-Adresse A				IP-Adresse B
Station A				Station B
ferner TSAP	\rightarrow	ISO-Transport-	\rightarrow	lokaler TSAP
lokaler TSAP	÷	Verbindung	÷	ferner TSAP
MAC-Adresse A				MAC-Adresse B
Station A				Station B
ferner Port	\rightarrow	UDP-	\rightarrow	lokaler Port
lokaler Port	←	Verbindung	\leftarrow	ferner Port
	`	0		

Kombinationsmöglichkeiten mit den verschiedenen Betriebarten

Verbindungs- partner	Verbindungstyp	Verbindungs- aufbau	Verbindung	Betriebsart
spezifiziert in NetPro (im aktu- ellen Projekt)	TCP / ISO-on- TCP /ISO-Trans- port	aktiv/passiv	spezifiziert	SEND/RECEIVE
	UDP	-		
unspezifiziert in NetPro (im aktu- ellen Projekt)	TCP / ISO-on- TCP /ISO-Trans- port	aktiv	spezifiziert	SEND/RECEIVE
		passiv	teilspezifiziert	SEND/RECEIVE
			(Port/TSAP)	FETCH PASSIV
				WRITE PASSIV

Kommunikationsverbindungen projektieren> Verbindungstyp - Send/Receive

Verbindungs- partner	Verbindungstyp	Verbindungs- aufbau	Verbindung	Betriebsart
			unspezifiziert	
	UDP	-	spezifiziert	SEND/RECEIVE
unspezifiziert in	TCP / ISO-on-	aktiv	spezifiziert	SEND/RECEIVE
NetPro (in unbe- kannten Projekt)	port	passiv	(Verbindungs- name in einem anderen Projekt)	SEND/RECEIVE
				FETCH PASSIV
				WRITE PASSIV
	UDP	-		SEND/RECEIVE
Alle Broadcast-	UDP	-	spezifiziert	SEND
Teilnehmer			(Port, Broadcast- Adr.)	
Alle Multicast- Teilnehmer	UDP	-	spezifiziert	SEND/RECEIVE
			(Port, Multicast- Gruppe)	

Nachfolgend sind alle relevanten Parameter für die verschiedenen Verbindungstypen beschrieben:

Allgemein:

In diesem Register werden die allgemeinen Verbindungsparameter angezeigt, die den lokalen Verbindungsendpunkt identifizieren.

- ID

Dieser Eintrag ist identisch mit dem Eintrag in der Verbindungsliste. Sie können diesen Wert jederzeit ändern. Bitte beachten Sie, dass Sie hierbei auch den ID-Parameter Ihrer Aufrufschnittstelle im FC anpassen.

– Name

Dieses Feld beinhaltet den Namen der Verbindung. Dieser wird vom System generiert und kann jederzeit geändert werden.

– Über CP [Wegewahl]

Hier wird dargestellt, über welchen lokalen CP die Verbindung aufgebaut werden soll. Mit der Schaltfläche [Wegewahl] können Sie den entsprechenden CP anwählen, über den die Verbindung laufen soll. Verwenden Sie für projektierbare Verbindungen nicht den 1. CP der Wegewahl. Als 1. CP finden Sie immer den Ethernet-PG/OP-Kanal, der <u>keine</u> projektierbaren Verbindungen unterstützt.

- Aktiver Verbindungsaufbau
 Im aktivierten Zustand baut die lokale Station aktiv die Verbindung zum Partner auf. Hierbei ist im Register "Adressen" der Verbindungspartner zu spezifizieren. Bei einer unspezifizierten Verbindung erfolgt der Verbindungsaufbau passiv.
- Bausteinparameter
 - Hier werden Ihnen die Parameter *ID* und *LADDR* für Ihr Anwenderprogramm angezeigt. Beides sind Parameter, die in Ihrem SPS-Programm bei Verwendung der FC 5 und FC 6 (AG_SEND, AG_RECEIVE) anzugeben sind. Bitte hier immer die VIPA FCs verwenden, welche Sie als Bibliothek von VIPA beziehen können.

Kommunikationsverbindungen projektieren > Verbindungstyp - Send/Receive

Adressen

Im Register Adressen werden die relevanten lokalen und fernen Adressinformationen als Vorschlagswerte angezeigt. Je nach Kommunikationsart können Sie Adressinformationen unspezifiziert lassen.

Port

Ports bzw. Port-Adressen definieren den Zugangspunkt zum Anwenderprogramm innerhalb der Station/CPU. Diese müssen eindeutig sein. Eine Port-Adresse sollte im Bereich 2000...65535 liegen.

- TSAP

ISO-on-TCP und ISO-Transport unterstützen TSAP-Längen (Transport Service Accesss Point) von 1...16 Byte. Sie können den TSAP im ASCII- oder im hexadezimalen Format eingeben. Die Längenberechnung erfolgt automatisch.

Optionen

Abhängig von der Spezifikation des Verbindungspartners können Sie hier folgende *Betriebsart* einstellen bzw. anzeigen lassen:

– SEND/RECEIVE

Die SEND/RECEIVE-Schnittstelle ermöglicht die programmgesteuerte Kommunikation über eine projektierte Verbindung zu beliebigen Fremdstationen. Die Datenübertragung erfolgt hierbei durch Anstoß durch Ihr Anwenderprogramm. Als Schnittstelle dienen Ihnen FC5 und FC6, die Bestandteil der VIPA-Baustein-Bibliothek sind. Hiermit wird Ihre Steuerung in die Lage versetzt, abhängig von Prozessereignissen Nachrichten zu versenden.

– FETCH/WRITE PASSIV

Mit den FETCH/WRITE-Diensten haben Fremdsysteme direkten Zugriff auf Speicherbereiche der CPU. Es handelt sich hierbei um "passive" Kommunikationsverbindungen, die zu projektieren sind. Die Verbindungen werden "aktiv" vom Verbindungspartner aufgebaut.

- FETCH PASSIV (Daten anfordern)
 - Mit FETCH kann ein Fremdsystem Daten anfordern.
- WRITE PASSIV (Daten schreiben)
 Hiermit kann ein Fremdsystem in den Datenbereich der CPU schreiben.
- Ubersicht

Hier werden alle in dieser Station projektierten Verbindungen mit ihren Partnern angezeigt. Die Angaben dienen der Information und können nicht geändert werden.

- Wird ein CP durch einen anderen ersetzt, muss dieser mindestens die gleichen Dienste bereitstellen und mindestens den gleichen Versionsstand haben. Nur so ist gewährleistet, dass die über den CP projektierten Verbindungen konsistent erhalten bleiben und genutzt werden können.
 - Durch entsprechende Verschiebe- bzw. Lösch-Aktivitäten im Siemens SIMATIC Manager können Verbindungen ihre Zuordnung zum CP verlieren. Bei diesen Verbindungen wird in der Übersicht die ID mit einem "!" markiert.

Kommunikationsverbindungen projektieren> Verbindungstyp - Send/Receive

5.11.3.1 FC 5 - AG_SEND / FC 6 - AG_RECV - CP 343 Kommunikation					
Übersicht	Die beiden Bausteine dienen der Verarbeitung von Verbindungsauf- trägen auf SPS-Seite eines Ethernet-CP 343. Durch Einbindung dieser Bausteine in den Zyklus-Baustein OB1 können Sie zyklisch Daten senden und empfangen.				
	Innerhalb dieser Bausteine werden die FCs 205 und 206 aufgerufen, die als Sonderfunktionsbausteine in der CPU abliegen.				
	Hinweis! Bitte beachten Sie, dass Sie in Ihrem Anwenderprogramm für die Kommunikation mit VIPA-CPs ausschließlich die SEND/RECV-FCs von VIPA einsetzen dürfen. Bei Wechsel zu VIPA-CPs in einem schon bestehenden Pro- jekt können die bestehenden AG_SEND / AG_LSEND bzw. AG_RECV / AG_LRECV durch AG_SEND bzw. AG_RECV von VIPA ohne Anpassung ersetzt werden. Da sich der CP automatisch an die Länge der zu übertra- genden Daten anpasst ist die L-Variante von SEND bzw. RECV bei VIPA nicht erforderlich.				
Kommunikationsbau- steine	Für die Kommunikation zwischen CPU und Ethernet-CP 343 stehen Ihnen folgende FCs zur Verfügung: AG SEND (FC 5)				
	Dieser Baustein übergibt die Nutzdaten aus dem über <i>SEND</i> angege- benen Datenbereich an den über <i>ID</i> und <i>LADDR</i> spezifizierten CP. Als Datenbereich können Sie einen PA-, Merker- oder Datenbaustein- Bereich angeben. Wurde der Datenbereich fehlerfrei übertragen, so wird "Auftrag fertig ohne Fehler" zurückgemeldet.				
	AG_RECV (FC 6)				
	Der Baustein übernimmt vom CP die Nutzdaten und legt sie in dem über <i>RECV</i> definierten Datenbereich ab. Als Datenbereich können Sie einen PE-, Merker- oder Datenbaustein-Bereich angeben. Wurde der Datenbereich fehlerfrei übernommen, so wird "Auftrag fertig ohne Fehler" zurückgemeldet.				
Statusanzeigen	Der CP bearbeitet Sende- und Empfangsaufträge unabhängig vom CPU Zyklus und benötigt hierzu eine Übertragungszeit. Die Schnitt- stelle mit den FC-Bausteinen zum Anwenderprogramm wird hierbei über Quittungen synchronisiert.				
	Für die Statusauswertung liefern die Kommunikationsbausteine Para- meter zurück, die Sie in Ihrem Anwenderprogramm direkt auswerten können.				
	Diese Statusanzeigen werden bei jedem Baustein-Aufruf aktualisiert.				
Einsatz unter hoher Kommunikationslast	Verwenden Sie keine zyklischen Aufrufe der Kommunikationsbau- steine im OB 1. Dies führt zu einer ständigen Kommunikation zwi- schen CPU und CP. Programmieren Sie statt dessen Ihre Kommuni- kationsbausteine in einem Zeit-OB, deren Zykluszeit größer ist als die des OB1 bzw. ereignisgesteuert.				

Kommunikationsverbindungen projektieren > Verbindungstyp - Send/Receive

Aufruf FC schneller als CP-Übertragungszeit

Wird ein Baustein im Anwenderprogramm erneut aufgerufen, bevor die Daten vollständig gesendet oder empfangen wurden, wird an der Schnittstelle der FC-Bausteine wie folgt verfahren:

AG_SEND

Es wird kein Auftrag entgegen genommen, bis die Datenübertragung über die Verbindung vom Partner quittiert wurde. Solange erhalten Sie die Meldung "Auftrag läuft", bis der CP den nächsten Auftrag für die gleiche Verbindung übernehmen kann.

AG_RECV

Der Auftrag wird mit der Meldung "Es liegen noch keine Daten vor" quittiert, solange der CP die Empfangsdaten noch nicht vollständig empfangen hat.

AG_SEND, AG_RECV im Anwenderprogramm

Eine mögliche Ablaufsequenz für die FC-Bausteine zusammen mit den Organisations- und Programmbausteinen im CPU-Zyklus ist nachfolgend dargestellt:

Die FC-Bausteine mit zugehöriger Kommunikationsverbindung sind farblich zusammengefasst. Hier können Sie auch erkennen, dass Ihr Anwenderprogramm aus beliebig vielen Bausteinen bestehen kann. Somit können Sie ereignis- bzw. programmgesteuert an beliebiger Stelle im CPU-Zyklus mit AG_SEND Daten senden bzw. mit AG_RECV Daten empfangen. Sie können die Bausteine für **eine** Kommunikationsverbindung auch mehrmals in einem Zyklus aufrufen.

AG_SEND (FC 5)

Mit AG_SEND werden die zu sendenden Daten von der CPU an einen Ethernet-CP 343 übertragen.

Kommunikationsverbindungen projektieren> Verbindungstyp - Send/Receive

Parameter	Deklaration	Datentyp	Beschreibung
ACT	INPUT	BOOL	Aktivierung des Senders
			0: Aktualisiert die DONE, ERROR und STATUS
			1: Der unter <i>SEND</i> mit der Länge <i>LEN</i> abgelegte Datenbereich wird gesendet
ID	INPUT	INT	Verbindungsnummer 1 16
			(identisch mit <i>ID</i> aus NetPro)
LADDR	INPUT	WORD	Logische Basisadresse des CPs
			(identisch mit LADDR aus NetPro)
SEND	INPUT	ANY	Datenbereich
LEN	INPUT	INT	Anzahl der Bytes, die aus dem Datenbereich zu über- tragen sind
DONE	OUTPUT	BOOL	Zustandsparameter für den Auftrag
			0: Auftrag läuft
			1: Auftrag fertig ohne Fehler
ERROR	OUTPUT	BOOL	Fehleranzeige
			0: Auftrag läuft (bei <i>DONE</i> = 0)
			0: Auftrag fertig ohne Fehler (bei <i>DONE</i> = 1)
			1: Auftrag fertig mit Fehler
STATUS	OUTPUT	WORD	Statusanzeige, die in Verbindung mit <i>DONE</i> und <i>ERROR</i> zurückgeliefert wird. Näheres hierzu finden Sie in der nachfolgenden Tabelle.

Parameter

AG_RECV (FC 6) Mit dem 1. Aufruf von AG_RECV richten Sie einen Empfangspuffer zwischen der CPU und einem Ethernet CP 343 ein. Von jetzt ab werden empfangene Daten automatisch in diesem Puffer abgelegt. Sobald nach einem Aufruf von AG_RECV der Rückgabewert *NDR* = 1 zurückgeliefert wird, liegen gültige Daten ab.

Da mit einem weiteren Aufruf von AG_RECV der Empfangspuffer für den Empfang neuer Daten wieder freigegeben wird, müssen Sie die zuvor empfangenen Daten sichern.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
ID	INPUT	INT	Verbindungsnummer 1 16
			(identisch mit <i>ID</i> aus NetPro)
LADDR	INPUT	WORD	Logische Basisadresse des CPs
			(identisch mit LADDR aus NetPro)
RECV	INPUT	ANY	Datenbereich für die empfangenen Daten.

Kommunikationsverbindungen projektieren > Verbindungstyp - Send/Receive

Parameter	Deklaration	Datentyp	Beschreibung
NDR	OUTPUT	BOOL	Zustandsparameter für den Auftrag
			0: Auftrag läuft
			1: Auftrag fertig Daten wurden ohne Fehler übernommen
ERROR	OUTPUT	BOOL	Fehleranzeige
			0: Auftrag läuft (bei <i>NDR</i> = 0)
			0: Auftrag fertig ohne Fehler (<i>NDR</i> = 1)
			1: Auftrag fertig mit Fehler
STATUS	OUTPUT	WORD	Statusanzeige, die in Verbindung mit <i>NDR</i> und <i>ERROR</i> zurückgeliefert wird. Näheres hierzu finden Sie in der nachfolgenden Tabelle.
LEN	OUTPUT	INT	Anzahl der Bytes, die empfangen wurden.

DONE, ERROR,
STATUSIn der nachfolgenden Tabelle sind alle Meldungen aufgeführt, die der
Ethernet-CP 343 nach einem SEND-Auftrag bzw. RECV-Auftrag
zurückliefern kann.

Ein "-" bedeutet, dass diese Meldung für den entsprechenden SENDbzw. RECV-Auftrag nicht existiert.

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
1	-	0	0000h	Auftrag fertig ohne Fehler.
-	1	0	0000h	Neue Daten wurden ohne Fehler übernommen.
0	-	0	0000h	Kein Auftrag in Bearbeitung.
-	0	0	8180h	Es liegen noch keine Daten vor.
0	0	0	8181h	Auftrag läuft
0	0	1	8183h	Für diesen Auftrag gibt es keine CP-Projektie- rung.
0	-	1	8184h	Es ist ein Systemfehler aufgetreten.
-	0	1	8184h	Es ist ein Systemfehler aufgetreten (Quelldatenbereich fehlerhaft)
0	-	1	8185h	Parameter LEN größer als Quell-Bereich SEND.
	0	1	8185h	Ziel-Puffer (RECV) ist zu klein.
0	0	1	8186h	Parameter ID ungültig (nicht im Bereich 1 16).
0	-	1	8302h	Keine Empfangsressourcen bei Ziel-Station, Emp- fänger-Station kann empfangene Daten nicht schnell genug verarbeiten bzw. hat keine Emp- fangsressourcen bereitgestellt.
0	-	1	8304h	Die Verbindung ist nicht aufgebaut. Der Sende- auftrag sollte erst nach einer Wartezeit > 100ms erneut abgesetzt werden.

Kommunikationsverbindungen projektieren> Verbindungstyp - Send/Receive

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
-	0	1	8304h	Die Verbindung ist nicht aufgebaut. Der Emp- fangsauftrag sollte erst nach einer Wartezeit > 100ms erneut abgesetzt werden.
0	-	1	8311h	Zielstation ist unter der angegebenen Ethernet- Adresse nicht erreichbar.
0	-	1	8312h	Ethernet-Fehler im CP
0		1	8F22h	Quell-Bereich ungültig, wenn beispielsweise Bereich im DB nicht vorhanden Parameter <i>LEN</i> < 0.
-	0	1	8F23h	Quell-Bereich ungültig, wenn beispielsweise Bereich im DB nicht vorhanden Parameter <i>LEN</i> < 0.
0	-	1	8F24h	Bereichsfehler beim Lesen eines Parameters.
-	0	1	8F25h	Bereichsfehler beim Schreiben eines Parameters.
0	-	1	8F28h	Ausrichtungsfehler beim Lesen eines Parameters.
-	0	1	8F29h	Ausrichtungsfehler beim Schreiben eines Para- meters.
-	0	1	8F30h	Parameter liegt im schreibgeschützten 1. akt. Datenbaustein
-	0	1	8F31h	Parameter liegt im schreibgeschützten 2. akt. Datenbaustein
0	0	1	8F32h	Parameter enthält zu große DB-Nummer.
0	0	1	8F33h	DB-Nummer Fehler
0	0	1	8F3Ah	Bereich nicht geladen (DB)
0	-	1	8F42h	Quittungsverzug beim Lesen eines Parameters aus dem Peripheriebereich.
-	0	1	8F43h	Quittungsverzug beim Schreiben eines Parame- ters in den Peripheriebereich.
0	-	1	8F44h	Adresse des zu lesenden Parameters in der Zugriffsspur gesperrt.
-	0	1	8F45h	Adresse des zu schreibenden Parameters in der Zugriffsspur gesperrt.
0	0	1	8F7Fh	Interner Fehler z.B. unzulässige ANY-Referenz z.B. Parameter <i>LEN</i> = 0.
0	0	1	8090h	Baugruppe mit dieser Baugruppen-Anfangsad- resse nicht vorhanden oder CPU in STOP.
0	0	1	8091h	Baugruppen-Anfangsadresse nicht auf Doppel- Wort-Raster.
0	0	1	8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.
-	0	1	80A0h	Negative Quittung beim Lesen von Baugruppe.
0	0	1	80A4h	reserviert
0	0	1	80B0h	Baugruppe kennt den Datensatz nicht.

Kommunikationsverbindungen projektieren > Verbindungstyp - Send/Receive

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
0	0	1	80B1h	Die Längenangabe (im Parameter LEN) ist falsch.
0	0	1	80B2h	reserviert
0	0	1	80C0h	Datensatz kann nicht gelesen werden.
0	0	1	80C1h	Der angegebene Datensatz ist gerade in Bearbei- tung.
0	0	1	80C2h	Es liegt ein Auftragsstau vor.
0	0	1	80C3h	Die Betriebsmittel (Speicher) der CPU sind tem- porär belegt.
0	0	1	80C4h	Kommunikationsfehler (tritt temporär auf; daher ist eine Wiederholung im Anwenderprogramm sinnvoll).
0	0	1	80D2h	Baugruppen-Anfangsadresse ist falsch.

Status-Parameter bei Neuanlauf Bei einem Neuanlauf des CP werden die Ausgabe-Parameter wie folgt zurückgesetzt:

- DONE = 0
- NDR = 0
- ERROR = 0
- STATUS = 8180h (bei AG_RECV) STATUS = 8181h (bei AG_SEND)
 - STATUS = 818 In (bel AGSEND)

5.12 NCM-Diagnose - Hilfe zur Fehlersuche

Checkliste zur Fehler- suche	Diese Seite soll Ihnen bei der Fehlersuche dienen. Die nachfolgende Checkliste soll Ihnen helfen, einige typische Problemstellungen und deren mögliche Ursachen zu erkennen:
	deren mögliche Ursachen zu erkennen:

Frage	Abhilfe bei "nein"		
CPU im Run?	 DC 24V-Spannungsversorgung überprüfen. Betriebsartenschalter in Stellung RUN bringen. SPS-Programm überprüfen und neu übertragen. 		
AG_SEND, AG_RECV im Anwenderprogramm?	Für den Datentransfer zwischen CP und CPU sind diese 2 Bau- steine im Anwenderprogramm erforderlich. Auch bei einer pas- siven Verbindung sind beide Bausteine aufzurufen.		
Kann CP verbinden?	 Ethernet-Leitung überprüfen (bei Punkt-zu-Punkt-Verbin- dung ist ein gekreuztes Ethernet-Kabel zu verwenden). IP-Adresse überprüfen. 		
Können Daten transferiert werden?	 Port-Nr. für Lesen und Schreiben überprüfen. Die Quell- und Zielbereiche überprüfen. Prüfen, ob der 2. CP in der Wegewahl angewählt ist. Den mit dem ANY-Pointer angegebenen Empfangs- bzw. Sendepuffer vergrößern. 		
Wird der komplette Datenblock bei ISO-on-TCP gesendet?	 Überprüfen Sie den LEN-Parameter bei AG_SEND. Den mit dem ANY-Pointer angegebenen Empfangs- bzw. Sendepuffer auf die erforderliche Größe einstellen. 		
Siemens NCM S7-Diag- nose To Fo	er CP unterstützt das Siemens NCM-Diagnosetool. Das NCM-Diag- setool ist Bestandteil des Siemens SIMATIC Managers. Dieses ool liefert dynamisch Informationen zum Betriebszustand der Kom- unikationsfunktionen von online geschalteten CPs. Igende Diagnose-Funktionen stehen Ihnen zur Verfügung: Betriebszustand an Ethernet ermitteln Im CP den Diagnosepuffer auslesen Verbindungen diagnostizieren		
NCM-Diagnose starten Da	as Diagnose-Tool starten Sie über <i>"Windows-START-Menü</i> SIMATIC → NCM S7 → Diagnose".		

Einsatz Ethernet-Kommunikation

NCM-Diagnose - Hilfe zur Fehlersuche

Keine Diagnose ohne

Verbindung

Aufbau

Die Arbeitsumgebung des Diagnose-Tools hat folgenden Aufbau:

- Im "Navigationsbereich" auf der linken Seite finden Sie die hierarchisch geordneten Diagnoseobjekte. Je nach CP haben Sie eine angepasste Objektstruktur im Navigationsbereich.
- Im "Informationsbereich" auf der rechten Seite finden Sie immer das Ergebnis der von Ihnen angewählten Navigationsfunktion im Navigationsbereich.

Für eine Diagnose ist immer eine Online-Verbindung zu dem zu diagnostizierenden CP erforderlich. Klicken Sie hierzu in der Symbolleiste auf 🚡

Es öffnet sich folgendes Dialogfenster:

NCM S7-Diagnose: Online-Pfad
Netzübergang
Zielstation
Anschluss :
Ind. Ethernet TCP/IP
Teilnehmeradresse: 172.16.129.200
Baugruppenträger/Steckplatz: 0 V / 5
PG/PC-Schnittstelle einstellen
OK Abrechen

Stellen Sie unter "Zielstation" folgende Parameter ein:

Anschluss ..:

Ind. Ethernet TCP/IP

- Teilnehmer-Adr.:
 - Tragen Sie hier die IP-Adresse des CPs ein
- Baugruppenträger/Steckplatz: Geben Sie hier den Baugruppenträger und Steckplatz des CP 343 an, den Sie an 2. Stelle projektiert haben. Stellen Sie Ihre PG/PC-Schnittstelle auf "TCP/IP -> Netzwerkkarte " ein. Mit [OK] starten Sie die Online-Diagnose.

Diagnosepuffer aus- lesen	Der CP besitzt einen Diagnosepuffer. Dieser hat die Architektur eines Ringspeichers. Hier können bis zu 100 Diagnosemeldungen festge- halten werden. In der NCM-Diagnose können Sie über das Diagnose- objekt <i>Diagnosepuffer</i> die Diagnosemeldungen anzeigen und aus- werten. Über einen Doppelklick auf eine Diagnosemeldung hält die NCM-Diagnose weitere Informationen bereit.					
Vorgehensweise bei der Diagnose	Sie führen eine Diagnose aus, indem Sie ein Diagnoseobjekt im Navi- gationsbereich anklicken. Weitere Funktionen stehen Ihnen über das Menü und über die Symbolleiste zur Verfügung.					
	 Überprüfen Sie immer anhand der Checkliste die Voraussetzungen für eine funktionsfähige Kommunikation. "Checkliste zur Fehlersuche" auf Seite 89 					
	Für den gezielten Diagnoseeinsatz ist folgende Vorgehensweise zweckmäßig:					
	1. Diagnose aufrufen					
	2. Mit To Dialog für Online-Verbindung öffnen, Verbindungspara- meter eintragen und mit [OK] Online-Verbindung herstellen.					
	3. Den CP identifizieren und über Baugruppenzustand den aktuellen Zustand des CPs ermitteln.					
	 4. Verbindungen überprüfen auf Besonderheiten wie: Verbindungszustand Empfangszustand Sendezustand 					
	5. Über <i>"Diagnosepuffer"</i> den Diagnosepuffer des CP einsehen und entsprechend auswerten.					
	6. Soweit erforderlich, Projektierung bzw. Programmierung ändern und Diagnose erneut starten.					
5.13 Kopplung mit F	remdsvstemen					
Übersicht	Die bei TCP- bzw. ISO-on-TCP unterstütze Betriebsart FETCH/ WRITE können Sie prinzipiell für Zugriffe von Fremdgeräten auf den SPS-Systemspeicher verwenden. Damit Sie diesen Zugriff z.B. auch für PC-Anwendungen implementieren können, müssen Sie den Tele- gramm-Aufbau für die Aufträge kennen. Die spezifischen Header für Anforderungs- und Quittungstelegramme sind standardmäßig 16Byte lang und werden auf den Folgeseiten beschrieben.					
ORG-Format	Das Organisationsformat ist die Kurzbeschreibung einer Datenquelle bzw. eines Datenziels in SPS-Umgebung. Die verwendbaren ORG- Formate sind in der nachfolgenden Tabelle aufgelistet. Die ERW- Kennung ist bei der Adressierung von Datenbausteinen relevant. In diesem Fall wird hier die Datenbaustein-Nummer eingetragen. Die Anfangsadresse und Anzahl adressieren den Speicherbereich und sind im HIGH-/LOW- Format abgelegt (Motorola - Adressformat).					

Kopplung mit Fremdsystemen

Beschreibung	Тур	Bereich
ORG-Kennung	BYTE	1x
ERW-Kennung	BYTE	1255
Anfangsadresse	HILOWORD	0y
Länge	HILOWORD	1z

In der nachfolgenden Tabelle sind die verwendbaren ORG-Formate aufgelistet. Die "Länge" darf nicht mit -1 (FFFFh) angegeben werden.

ORG-Kennung 01h-04h

CPU-Bereich	DB	MB	EB	AB
ORG-Kennung	01h	02h	03h	04h
Beschreibung	Quell-/Zieldaten aus/in Datenbau- stein im Hauptspei- cher.	Quell-/Zieldaten aus/in Merkerbe- reich.	Quell-/Zieldaten aus/in Prozessab- bild der Eingänge (PAE).	Quell-/Zieldaten aus/in Prozessab- bild der Ausgänge (PAA).
ERW-Kennung (DBNR)	DB, aus dem die Quelldaten ent- nommen werden bzw. in den die Ziel- daten transferiert werden.	irrelevant	irrelevant	irrelevant
Anfangsadresse Bedeutung	DBB-Nr., ab der die Daten entnommen bzw. einge- schrieben werden.	MB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	EB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	AB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.
Länge Bedeutung	Länge des Quell-/ Zieldatenblocks in <u>Worten</u> .	Länge des Quell-/ Zieldatenblocks in Bytes.	Länge des Quell-/ Zieldatenblocks in Bytes.	Länge des Quell-/ Zieldatenblocks in Bytes.

ORG-Kennung 05h-07h

CPU-Bereich	PB	ZB	ТВ
ORG-Kennung	05h	06h	07h
Beschreibung	Quell-/Zieldaten aus/in Peripheriebaugruppen. Bei Quelldaten Eingabebau- gruppen, bei Zieldaten Ausgabebaugruppen.	Quell-/Zieldaten aus/in Zäh- lerzellen.	Quell-/Zieldaten aus/in Zei- tenzellen.
ERW-Kennung (DBNR)	irrelevant	irrelevant	irrelevant
Anfangsadresse Bedeutung	PB-Nr., ab der die Daten entnommen bzw. einge- schrieben werden.	ZB-Nr., ab der die Daten entnommen bzw. einge- schrieben werden.	TB-Nr., ab der die Daten entnommen bzw. einge- schrieben werden.
Länge Bedeutung	Länge des Quell-/Zielda- tenblocks in Bytes.	Länge des Quell-/Zielda- tenblocks in Worten (Zählerzelle = 1 Wort).	Länge des Quell-/Zielda- tenblocks in Worten (Zählerzelle = 1 Wort).

Übertragen von Baus- teinen mit Nummern >255	ORG-Kennung 81h-FFh Zur Übertragung von Datenbausteinen im Nummernbereich 256 32768 können Sie die ORG-Kennung 81h-FFh verwenden. Da die Angabe einer DB-Nr. >255 ein Wort als Länge erfordert, setzt sich DBNR _{neu} aus dem Inhalt von ORG-Kennung und DBNR zusammen. DBNR _{neu} wird als Wort auf folgende Weise generiert:						n.									
	DBNR _{neu}															
	Hig	n-By	te						Low-Byte							
	1	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
ORG-Kennung (0XXXXXX)DBNR (XXXXXXX)Ist das höchste Bit der ORG-Kennung gesetzt, so ergibt sich da Low-Byte von DBNR _{neu} aus der DBNR und das High-Byte von DBNR _{neu} aus der ORG-Kennung, wobei das höchste Bit der OR Kennung eliminiert wird. Folgende Formel soll dies nochmals v lichen:DBNR _{neu} =256 x (ORGKennung AND 7Fh) + DBNR		OR	G-Ke	ennu	ng (()XXX	XXX	XX)		D	BNR	(XX	XXX	(XX)	()	
	das າ)RG- verd	- eut-														
	DBNR _{neu} =256 x (ORGKennung AND 7Fh) + DBNR															
Aufbau SPS-Header	Bei F rung habe	ETC s-un en fol	CH u d Qu Igen	nd V Jittur de S	VRIT igste trukt	E ge elegra	eneri amm	iert d ne. D	er Cl iese	P SF Hea	'S-H der s	eade sind	er für 16B <u>y</u>	r Anf yte la	[:] orde ang ເ	:- und

WRITE

Anforderungstelegramm Remote Station	Quittungstelegramm CP
Systemkennung = "S5" (Wort)	Systemkennung = "S5" (Wort)
Länge Header = 10h (Byte)	Länge Header = 10h (Byte)
Kenn. OP-Code = 01h (Byte)	Kenn. OP-Code = 01h (Byte)
Länge OP-Code = 03h (Byte)	Länge OP-Code = 03h (Byte)
OP-Code = 03h (Byte)	OP-Code = 04h (Byte)
ORG-Block = 03h (Byte)	Quittungsblock = 0Fh (Byte)
Länge ORG-Block = 08h (Byte)	Länge Q-Block = 03h (Byte)
ORG-Kennung* (Byte)	Fehler-Nr. (Byte)
ERW-Kennung (Byte)	Leerblock = FFh (Byte)
Anfangsadresse (Wort)	Länge Leerblock = 07h (Byte)
Länge (Wort)	5 leere Bytes angehängt
Leerblock = FFh (Byte)	

Beispiel zur Kommunikation CPU 215-2BT16

Anforderungstelegramm Remote Station	Quittungstelegramm CP
Länge Leerblock = 02h (Byte)	
Daten bis zu 64kByte	
(nur wenn Fehler-Nr.=0)	

FETCH

Anforderungstelegramm Remote Station	Quittungstelegramm CP
Systemkennung = "S5" (Wort)	Systemkennung = "S5" (Wort)
Länge Header = 10h (Byte)	Länge Header = 10h (Byte)
Kenn. OP-Code = 01h (Byte)	Kenn. OP-Code = 01h (Byte)
Länge OP-Code = 03h (Byte)	Länge OP-Code = 03h (Byte)
OP-Code = 05h (Byte)	OP-Code = 06h (Byte)
ORG-Block = 03h (Byte)	Quittungsblock = 0Fh (Byte)
Länge ORG-Block = 08h (Byte)	Länge Q-Block = 03h (Byte)
ORG-Kennung* (Byte)	Fehler-Nr. (Byte)
ERW-Kennung (Byte)	Leerblock = FFh (Byte)
Anfangsadresse (Wort)	Länge Leerblock = 07h (Byte)
Länge (Wort)	5 leere Bytes angehängt
Leerblock = FFh (Byte)	Daten bis zu 64kByte
Länge Leerblock = 02h (Byte)	(nur wenn Fehler-Nr.=0)

*) Nähere Angaben zum Datenbereich finden Sie unter "ORG-Format" weiter oben.

Bitte beachten Sie, dass im Gegensatz zu Siemens-S5-Systemen hier bei der Daten-Baustein-Adressierung die Anfangsadresse als Byte-Nummer interpretiert wird.

Meldungen von Fehler- Nr.	Folgende Meldungen können über Fehler-Nr. zurückgeliefert werden

Fehler-Nr.	Meldung
00h	Kein Fehler aufgetreten
01h	Der angegebene Bereich kann nicht gelesen bzw. beschrieben werden

5.14 Beispiel zur Kommunikation CPU 215-2BT16

Übersicht

Dieses Kapitel soll in den Umgang mit dem Bussystem TCP/IP für das System 200V einführen. Ziel dieses Kapitels ist es, eine Kommunikation zwischen zwei VIPA CPUs 21xNET aufzubauen, die auf einfache Weise die Kontrolle der Kommunikationsvorgänge erlaubt. Voraussetzungen Kenntnisse über die VIPA-CP-Hantierungsbausteine AG_SEND und AG_RECV sind erforderlich. Die CP-Hantierungsbausteine ermöglichen die Nutzung der Kommunikationsfunktionen durch Programme in den Automatisierungsgeräten.

Für die Durchführung des Beispiels sollten Sie mindestens die folgenden technischen Einrichtungen besitzen:

- Hardware
 - 2 CPUs 21xNET von VIPA
 - 1 PC oder PG mit Twisted Pair Ethernet-Anschluss
- Ubertragungsstrecke
 - 3 Buskabel
 - 1 Switch/Hub
- Adressen
 - 2 IP Adressen und Subnet-Masken für 2 CPs
- Software-Pakete
 - Siemens SIMATIC Manager V. 5.1 oder höher
 - Siemens SIMATIC NET

Zur Realisierung des Beispiels ist die Programmierung der zwei CPUs sowie die Parametrierung der Kommunikationsprozessoren unter NetPro von Siemens erforderlich.

Aufgaben für die Stationen Dem Beispiel wird eine Kommunikationsaufgabe zugrunde gelegt, die im Folgenden näher erläutert wird: In beiden CPUs läuft das gleiche SPS-Programm, lediglich die Projektierung der CP-Teile ist auf die jeweilige Station anzupassen. Beide Stationen senden und empfangen im Sekundentakt 16 Datenworte.

- Im Datenbaustein DB 11 werden die Datenbyte DBB 0 bis DBB 32 im Takt von 1s übertragen. Das Datenbyte DBB 0 im DB 11 dient hierbei als Telegrammzähler. Es wird nur dann inkrementiert, wenn der vorhergegangene Sendeauftrag korrekt (fertig ohne Fehler) abgearbeitet wurde. Über die restlichen Datenbyte (DBB 2 bis DBB 32) könnten Nutzdaten übertragen werden.
- Die empfangende Station legt die Daten in DB 12 ab (DBB 0 bis DBB 31).
- Über NetPro ist eine aktive SEND/RECEIVE-Verbindung mit der ID 1 für den CP zu projektieren. Diese Verbindung erscheint bei der 2. Station als passive SEND/RECEIVE-Verbindung.
- Die Quell- und Zielparameter sind direkt zu parametrieren.

Die Aufgabenstellung und die erforderlichen Voreinstellungen sind somit umrissen. Weitere Einzelheiten zur Projektierung finden Sie auf den Folgeseiten Beispiel zur Kommunikation CPU 215-2BT16

Schritte der Projektie-	Die Projektierung gliedert sich in folgende Teile:					
rung	 Hardware-Konfiguration CP-Projektierung unter NetPro SPS-Anwenderprogramm Projekt transferieren 					
Hardware-Konfiguration Station 1	1. Starten Sie den Siemens SIMATIC Manager mit einem neuen Projekt.					
	Even Sie mit Einfügen > Station > SIMATIC 300-Station einen neue System 300 Station ein und geben Sie Ihr den Namen "Station 1".	е				
	3. Aktivieren Sie die Station "SIMATIC 300" und öffnen Sie den Hardware-Konfigurator indem Sie auf "Hardware" klicken.					
	4. Projektieren Sie ein Rack (SIMATIC 300 \ Rack-300 \ Profilschiene).					
	5. Projektieren Sie stellvertretend für Ihre CPU 21xNET die Sie- mens CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.), zu finde unter SIMATIC 300 \ CPU 300 \ CPU 315-2DP. Parametrieren Sie ggf. die CPU 315-2DP.	ท เ				
	6. ▶ Projektieren Sie stellvertretend für den CP den Siemens-CP CP343-1 (343-1EX11) auf Steckplatz 4, zu finden unter SIMATIC 300 \ CP 300 \ Industrial Ethernet \ CP 343-1.					
	 Geben Sie in den "CP-Eigenschaften" die gewünschte IP- Adresse und Subnet-Maske an. 					
	8. Für dieses Beispiel ist eine Projektierung des System 200V in Form eines virtuellen PROFIBUS-System nicht erforderlich.					
Hardware-Konfiguration Station 2	Erzeugen Sie gemäß der oben gezeigten Vorgehensweise ein Hardware-Konfiguration für die Ziel-CPU und geben Sie diese den Namen "Station 2".	ne r				
	⇒ Verwenden Sie hierbei f ür den CP die f ür Station 2 zugetei IP-Adresse, Subnet-Maske und Gateway.	ilte				
	2. Speichern und übersetzen Sie Ihr Projekt.					
CP-Projektierung unter NetPro	 Starten Sie NetPro indem Sie unter Station 1 die CPU anwähl und auf das Objekt "Verbindungen" klicken. In NetPro werden "Station 1" und "Station 2" aufgelistet verbunden mit Ethernet dargestellt. 	en				
	Ethernet					

2. Zur Projektierung der Verbindung blenden Sie die Verbindungsliste ein. Wählen Sie hierzu die CPU von Station 1 an und rufen Sie über das Kontextmenü *Neue Verbindung einfügen* auf:

- **3.** Es öffnet sich ein Dialogfenster in dem Sie den Verbindungspartner auswählen und den Typ der Verbindung einstellen können. Projektieren Sie folgende Verbindung:
 - ⇒ Neue Verbindung

Verbindung: TCP-Verbindung

Verbindungspartner: Station 2 > CPU 315-2DP

Eigenschaften TCP-Verbindung

ID: 1

ID und *LADDR* sind Parameter, die in Ihrem SPS-Programm bei Verwendung der FC 5 (AG_SEND) und FC 6 (AG_RECEIVE) anzugeben sind.

Wegewahl:

Mit der *Wegewahl* können Sie den entsprechenden CP anwählen, über den die Verbindung laufen soll. Zur Kommunikation zwischen den CPU 21xNET ist die Wegewahl "CP 343-1 - (R0/S4)" schon richtig eingestellt.

Aktiver Verbindungsaufbau: aktiviert

4. Speichern und Übersetzen Sie Ihre Verbindung.

SPS-Anwenderprogramm Für die Verarbeitung der Verbindungsaufträge auf SPS-Seite ist ein SPS-Anwenderprogramm in der jeweiligen CPU erforderlich. Hierbei kommen ausschließlich die Hantierungsbausteine AG_SEND (FC 5) und AG_RECV (FC 6) zum Einsatz. Durch Einbindung dieser Bausteine in den Zyklus-Baustein OB1 mit den Parametern ID und LADDR können Sie zyklisch Daten senden und empfangen. Die beiden FCs sind Bestandteil der VIPA-Library, die sich als CD im Lieferumfang der CPU befindet.

OB 1 Zyklus Über den Zyklus-OB OB 1 wird das Senden und Empfangen der Daten gesteuert. Der OB 1, den Sie in beide CPUs transferieren können, hat folgenden Aufbau:

UNT1// Timer 1 getriggertes SendenLS5T#1S// alle 1 Sec ein SendeanstoßSVT1SM10.0// Anstoß-Merker

Beispiel zur Kommunikation CPU 215-2BT16

```
CALL
      "AG SEND"
                     // Anstoß-Merker
ACT
      :=M10.0
                     // Verbindungsnummer
ID
      :=1
                     // Baugruppenadresse
LADDR :=W#16#110
SEND :=P#DB11.DBX0.0 BYTE 100
                 // Sendepuffer Bereich DB11
                     // 32 Byte (16 Worte) aus DB11
LEN
      :=32
senden
DONE
     :=M10.1
ERROR :=#Senderror // Temporärer Fehler-Merker
STATUS:=MW12
                     // Auftrags- bzw.
Verbindungsstatus
U
      М
            10.1
                     // Senden fertig?
SPBN
      nDon
                     // Senden fertig
IJ
      М
            10.1
                     // Anstoß rücksetzen
            10.0
R
      М
IJ
      #Senderror
                     // Bei Sendeerror
                      // Sendezähler nicht erhöhen
SPB
      nDon
                     // Sendezähler in den
      DB11.DBW 0
L
Nutzdaten (DBW0)
T,
      1
                      // um eins inkrementieren und
                     // wieder im Sendepuffer
+Ι
ablegen
Т
      DB11.DBW
                0
nDon:
NOP
      0
                          // Senden noch nicht
fertig
// Zyklischer Aufruf des Receive Bausteins
CALL
      "AG RECV"
                      // Verbindungsnummer
ТD
      :=1
                     // Baugruppenadresse
LADDR :=W#16#110
RECV :=P#DB12.DBX100.0 BYTE 32
                                   //Empfangspuffer
      :=#Newdata
                     // NewDataReceived?
NDR
ERROR :=M0.1
                     // RecError
STATUS:=MW2
                     // Auftrags- bzw.
Verbindungsstatus
LEN
      :=#Reclen
                     // tatsächlich empfangene
Länge
NOP
                      // Reclen kann bei ISO-on-TCP
      0
< 32 sein
                     // wenn neue Daten empfangen
IJ
      #Newdata
ZV
                      // Empfangszähler Zähler 1
      Ζ
             1
                     // inkrementieren
                     // Zähler 1 bei Überlauf
L
      Ζ
             1
                     // zurücksetzen
      999
Τ.
==I
R
      Ζ
             1
```

Beispiel zur Kommunikation CPU 215-2BT16> Beobachtung der Übertragung im Siemens SIMATIC Manager

5.14.1 Beobachtung der Übertragung im Siemens SIMATIC Manager

Als Ausgangspunkt werden parametrierte CPs und urgelöschte CPUs, deren RUN/STOP-Schalter in der Grundstellung STOP steht, vorausgesetzt. Übertragen Sie das zuvor beschriebene Kommunikationsprojekt in beide CPUs und bringen Sie diese in RUN. Starten Sie den Siemens SIMATIC Manager und führen Sie zur Beobachtung des Sendeauftrags die folgenden Schritte aus:

- **1. Zielsystem** > Variable beobachten/steuern
- **2.** Tragen Sie unter "Operand" die entsprechende Datenbaustein-Nr. und das Datenwort ein (DB11.DBB 0-31).
- **3.** Stellen Sie eine Verbindung her und klicken Sie auf "beobachten" *M*.

Variable b	eobachten un	d steuern				_ 🗆 ×
🕌 <u>T</u> abelle <u>B</u>	earbeiten <u>E</u> inf	ügen <u>Z</u> iels	ystem ⊻ariable <u>A</u> n:	sicht E <u>x</u> tras <u>F</u> enster	<u>H</u> ilfe	_ 8 ×
	8 X P	a n	∭ab 💁 🖁 ତ	N 10	60° 147 //2	
Operand		Symbol	Statusformat	Statuswert	Steuerwert	
MW 10			HEX			
DB11.DBW	0		HEX			
DB11.DBW	2		HEX			
DB11.DBW	4		HEX			
DB11.DBW	6		HEX			
DB11.DBW	8		HEX			
DB11.DBW	10		HEX			1
DB11.DBW	12		HEX			1
DB11.DBW	14		HEX			1
DB11.DBW	16		HEX			1
DB11.DBW	18		HEX			1
DB11.DBW	20		HEX			1
DB11.DBW	22		HEX			
DB11.DBW	24		HEX			
DB11.DBW	26		HEX			
DB11.DBW	28		HEX			
DB11.DBW	30		HEX			

Nutzdaten eingeben

Ab DBB 2 können Nutzdaten eingetragen werden. Gehen Sie hierzu mit dem Cursor auf *Steuerwert* und tragen Sie einen zu übertragenden Wert ein, wie z.B. W#16#1111.

Mit 🕶 übertragen Sie den Steuerwert bei jedem Zyklusdurchlauf bzw. mit 🔄 einmalig.

TIA Portal - Arbeitsumgebung > Allgemein

6 Projektierung im TIA Portal

6.1 TIA Portal - Einschränkungen

Allgemein	Da die VIPA-CPU im Siemens TIA Portal als Siemens CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.) projektiert wird, ergeben sich bei der Projektierung der VIPA-CPU Einschränkungen.			
VIPA-spezifische SFCs	Bei der Programmierung im Siemens TIA Portal werden VIPA-spezifische SFCs nicht unterstützt.			
Operationsbausteine - OBs	 OB 55 "Statusalarm" wird von der VIPA-CPU nicht unterstützt. OB 56 "Updatealarm" wird von der VIPA-CPU nicht unterstützt. OB 81 "Stromversorgungsfehler" ist in der VIPA-CPU vorhanden, wird aber vom Siemens TIA Portal nicht unterstützt Die im Siemens TIA Portal einstellbare "Phasenverschiebung" für den OB 35 "Weckalarm" wird von der VIPA-CPU nicht ausgewertet. 			
Weitere Einschrän- kungen	 Die im Siemens TIA Portal konfigurierbaren "Anlagen- und Orts- kennzeichen" werden von der VIPA-CPU nicht unterstützt. Im Gegensatz zur Siemens CPU 315-2DP mit einem Periphe- rieadressbereich von 0 2047, beschränkt sich der Peripheriead- ressbereich der VIPA-CPU auf 0 1023. Diagnoseadressen gehen aber von 0 2047 und sind von dieser Einschränkung nicht betroffen. Der Merkerbereich (Remanenzbereich) ist ebenfalls begrenzt auf 0 1023. 			

6.2 TIA Portal - Arbeitsumgebung

6.2.1 Allgemein

Allgemein

In diesem Teil wird die Projektierung der VIPA CPU im Siemens TIA Portal gezeigt. Hier soll lediglich der grundsätzliche Einsatz des Siemens TIA Portals in Verbindung mit der VIPA CPU gezeigt werden. Bitte beachten Sie, dass Softwareänderungen nicht immer berücksichtigt werden können und es so zu Abweichungen zur Beschreibung kommen kann. TIA steht für Totally integrated **A**utomation von Siemens. Hier können Sie Ihre VIPA-Steuerungen programmieren und vernetzen. Für die Diagnose stehen Ihnen Online-Werkzeuge zur Verfügung.

C)
1	
Ŀ	

Nähere Informationen zum TIA Portal finden Sie in der zugehörigen Online-Hilfe bzw. Dokumentation.

TIA Portal starten

Zum Starten des Siemens TIA Portals wählen Sie unter Windows den Befehl "Start \rightarrow Programme \rightarrow Siemens Automation \rightarrow TIA ..."

Daraufhin wird das TIA Portal mit den zuletzt verwendeten Einstellungen geöffnet. TIA Portal - Arbeitsumgebung > Arbeitsumgebung des TIA Portals

TIA		
Start	 Bestehendes Projekt öffnen Neues Projekt erstellen 	Bestehende Projekte: Projekt 1 Projekt 2
	—	Projekt 3
Online & Diagnose		
> Projektansicht		

TIA Portal beenden Mit dem Menüpunkt *"Projekt → Beenden"* können Sie aus der *"Projektansicht"* das TIA Portal beenden. Hierbei haben Sie die Möglichkeit durchgeführte Änderungen an Ihrem Projekt zu speichern.

6.2.2 Arbeitsumgebung des TIA Portals

Grundsätzlich besitzt das TIA Portal folgende 2 Ansichten. Über die Schaltfläche links unten können Sie zwischen diesen Ansichten wechseln:

PortalansichtDie "Portalansicht" bietet eine "aufgabenorientierte" Sicht der Werkzeuge zur Bearbeitung Ihres Projekts. Hier haben Sie direkten Zugriff auf die Werkzeuge für eine Aufgabe. Falls erforderlich, wird für die ausgewählte Aufgabe automatisch zur Projektansicht gewechselt.ProjektansichtDie "Projektansicht" ist eine "strukturierte" Sicht auf alle Bestandteile Ihres Projekts.Bereiche der Projektan-
sichtDie Projektansicht gliedert sich in folgende Bereiche:

TIA Portal - Hardware-Konfiguration - CPU

- 1 Menüleiste mit Funktionsleisten
- 2 Projektnavigation mit Detailansicht
- 3 Projektbereich
- Geräteübersicht des Projekts bzw. Bereich für die Baustein-Programmierung
 Eigenschaften-Dialog eines Geräts (Parameter) bzw. Informati-
- 5 Ěigenschaften-Dialog eines Geräts (Parameter) bzw. Informationsbereich
- 6 Hardware-Katalog und Tools
- 7 "Task-Cards" zur Auswahl von Hardware-Katalog, Anweisungen und Bibliotheken
- 8 Wechsel zwischen Portal- und Projektansicht

6.3 TIA Portal - Hardware-Konfiguration - CPU

Übersicht

Die Hardware-Konfiguration der CPU und der am VIPA-Bus gesteckten System 200V Module erfolgt im Siemens TIA Portal in Form eines virtuellen PROFIBUS-Systems. Da die PROFIBUS-Schnittstelle auch softwareseitig standardisiert ist, können wir auf diesem Weg gewährleisten, dass über die Einbindung einer GSD-Datei die Funktionalität in Verbindung mit dem Siemens TIA Portal jederzeit gegeben ist. Ihr Projekt können Sie über die MPI-Schnittstelle oder mittels MMC in Ihre CPU übertragen.

GSD-Datei einbinden

- **1.** Gehen Sie auf www.vipa.com > Service > Download > PRO-FIBUS GSD-Dateien und laden Sie die Datei *System_100V_-_200V_Vxxx.zip.*
- Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis. Die vipa_21x.gsd (deutsch) bzw. vipa_21x.gse (englisch) befinden sich im Verzeichnis CPU21x.
- **3.** Starten Sie den Hardware-Konfigurator von Siemens und schließen Sie alle Projekte.
- **4.** Gehen Sie auf **Extras** > Neue GSD-Datei installieren.

- 5. Navigieren Sie in das Verzeichnis CPU21x und geben Sie die entsprechende Datei vipa_21x.gsd (deutsch) oder vipa_21x.gse (englisch) an.
 - ⇒ Die Module des System 200V von VIPA befinden sich im Hardwarekatalog unter PROFIBUS-DP \ Weitere Feldgeräte \ I/O \ VIPA_System_200V.

Projektierung SiemensMit dem Siemens TIA Portal ist die VIPA CPU als CPU 315-2DP
(6ES7 315-2AG10-0AB0 V2.6.) von Siemens zu projektieren.

- **1.** Starten Sie das Siemens TIA Portal.
- **2.** Erstellen sie in der *Portalansicht* mit *"Neues Projekt erstellen"* ein neues Projekt.
- **3.** Wechseln Sie in die *Projektansicht*.
- **4.** Klicken Sie in der *Projektnavigation* auf "Neues Gerät hinzufügen".
- Wählen Sie im Eingabedialog folgende CPU aus: SIMATIC S7-300 > CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.)
 - ⇒ Die CPU wird mit einer Profilschiene eingefügt.

Geräteübersicht:

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2DP	
MPI-Schnitt- stelle	20	MPI-Schnittstelle	
DP-Schnitt- stelle	2 X2	DP-Schnittstelle	

TIA Portal - Hardware-Konfiguration - CPU > Virtuelles PROFIBUS-System

Einstellung Standard CPU-Parameter Da die CPU von VIPA als Siemens-CPU projektiert wird, erfolgt auch die Parametrierung über die Siemens-CPU. Zur Parametrierung klicken Sie im *Projektbereich* bzw. in der *Geräteübersicht* auf den CPU-Teil. Daraufhin werden die Parameter des CPU-Teils im *Eigenschaften*-Dialog aufgeführt. Hier können Sie Ihre Parametereinstellungen vornehmen. § "Parameter CPU" auf Seite 45

6.3.1 Virtuelles PROFIBUS-System

PROFIBUS Master-System anlegen

Vernetzen und parametrieren Sie die interne DP-Schnittstelle in der Betriebsart "DP-Master".

VIPA_CPU21x

- 1. Wechseln Sie im Projektbereich in die "Netzsicht".
- 2. Binden Sie das Slave-System "VIPA_CPU 21x" an. Nach der Installation der vipa_21x.GSD finden Sie dieses im Hardware-Katalog unter:

Weitere Feldgeräte > PROFIBUS DP > E/A > VIPA GmbH > VIPA_System_200V > VIPA_CPU21x.

3. Stellen Sie für das CPU21x-Slave-System die PROFIBUS-Adresse 1 ein.

Menu	la Xis≎x nicia	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	Netzsicht		Katalog
	PLC CPU 315-2DP	Slave VIPA_CPU21x PROFIBUS	Filter 1 • PROFIBUS DP · · · · · · · · · · · · · · · · ·
	Slave Allgemein PROFIBUS-Adresse ALLgemeine DP-Param 	Eigenschaften PROFIBUS-Adresse Schnittstelle vernetzen mit Subnetz: PROFIBUS Parameter Adresse: 1	VIPA CPU21x VIPA CPU21x Universalmodul

Damit die VIPA-Komponenten angezeigt werden können, müssen Sie im Hardware-Katalog bei "Filter" den Haken entfernen.

- **1.** Klicken sie auf das Slave-System und klicken Sie im *Projektbereich* in die "Geräteübersicht".
- Platzieren Sie auf Steckplatz 1 die entsprechende CPU 215-2BT16 aus dem Hardware-Katalog von VIPA_System_200V.

Geräteübersicht:

Baugruppe	 Steckplatz	 Тур	
Slave	0	VIPA CPU21x	
215-2BT16	1	215-2BT16	
	2		

DP-Slaves projektieren

- **1.** Installieren Sie die entsprechende GSD-Datei Ihres Slave-Systems im Hardware-Konfigurator.
- 2. Entnehmen Sie aus dem Hardware-Katalog das entsprechende PROFIBUS-System und ziehen Sie dies auf das DP-Master Subnetz.
- **3.** Vergeben Sie dem Slave eine Adresse > 2.
- **4.** Binden Sie gemäß Ihrem Hardwareaufbau Ihre Module ein.

6.4 TIA Portal - Hardware-Konfiguration - I/O-Module

Hardware-Konfiguration der Module Binden Sie in Ihrem Slave-System nach der CPU Ihre System 200V Module in der gesteckten Reihenfolge ein. Gehen Sie hierzu in den Hardware-Katalog und ziehen Sie das entsprechende Modul auf die entsprechende Position in der *Geräteübersicht*. TIA Portal - Hardware-Konfiguration - Ethernet-PG/OP-Kanal

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	1	CPU	
DI	2	DI	
DO	3	DO	
DIO	4	DIO	
Al	5	AI	
AO	6	AO	

Parametrierung

Damit die gesteckten Peripheriemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden. Zur Parametrierung klicken Sie in der *Geräteübersicht* auf das zu parametrierende Modul. Daraufhin werden die Parameter des Moduls im Eigenschaften-Dialog aufgeführt. Hier können Sie Ihre Parametereinstellungen vornehmen.

6.5	TIA Portal -	Hardware-Konfiguration - Ethernet-PG/OP-Kanal
Übersicht		Die CPU hat einen Ethernet-PG/OP-Kanal integriert. Über diesen Kanal können Sie Ihre CPU programmieren und fernwarten.
		 Mit dem Ethernet-PG/OP-Kanal haben Sie auch Zugriff auf die interne Web-Seite, auf der Sie Informationen zu Firmwarestand, angebundene Peripherie, aktuelle Zyklus-Zeiten usw. finden.

Bei Erstinbetriebnahme bzw. nach dem Rücksetzen auf Werkseinstellungen besitzt der Ethernet-PG/OP-Kanal keine IP-Adresse. TIA Portal - Hardware-Konfiguration - Ethernet-PG/OP-Kanal

	 Damit Sie online über den Ethernet-PG/OP-Kanal auf die CPU zugreifen können, müssen Sie diesem gültige IP-Adress-Parameter zuordnen. Diesen Vorgang nennt man "Initialisierung" oder "Urtaufe". Dies kann mit dem Siemens TIA Portal erfolgen.
Montage und Inbetrieb-	1. Bauen Sie Ihr System 200V mit Ihrer CPU auf.
nahme	2. Verdrahten Sie das System, indem Sie die Leitungen f ür Span- nungsversorgung und Signale anschließen.
	3. Verbinden Sie die Ethernet-Buchse des Ethernet-PG/OP-Kanals mit Ethernet.
	4. Schalten Sie die Spannungsversorgung ein.
	Nach kurzer Hochlaufzeit ist der CP bereit für die Kommuni- kation. Er besitzt ggf. noch keine IP-Adressdaten und erfor- dert eine Urtaufe.
"Urtaufe" über Online- funktionen	Die Urtaufe über die Onlinefunktion erfolgt nach folgender Vorge- hensweise:
	Ermitteln Sie die aktuelle Ethernet (MAC) Adresse Ihres Ethernet PG/OP-Kanals. Sie finden diese immer als 1. Adresse unter der Frontklappe der CPU auf einem Aufkleber auf der linken Seite.
IP-Adress-Parameter zuweisen	Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadminist- rator. Die Zuweisung der IP-Adress-Daten erfolgt online im Siemens TIA Portal nach folgender Vorgehensweise:
	1. Starten Sie das Siemens TIA Portal.
	2. Wechseln Sie in die "Projektansicht".
	3. Klicken Sie in der "Projektnavigation" auf "Online-Zugänge" und wählen Sie hier durch Doppelklick Ihre Netzwerkkarte aus, welche mit dem Ethernet-PG/OP-Kanal verbunden ist.
	4. Benutzen Sie <i>"Erreichbare Teilnehmer"</i> , um die über MAC- Adresse erreichbaren Geräte zu ermitteln. Die MAC-Adresse finden Sie auf dem 1. Aufkleber unter der Frontklappe der CPU.
	5. Wählen Sie aus der Liste die Baugruppe mit der Ihnen bekannten MAC-Adresse (Onboard PG/OP [MAC-Adresse]) und öffnen Sie mit "Online & Diagnose" den Diagnose-Dialog im <i>Pro-</i> <i>jektbereich</i> .
	 Navigieren Sie zu Funktionen > IP-Adresse zuweisen. Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, Sub- netz-Maske und den Netzübergang eintragen.

TIA Portal - Hardware-Konfiguration - Ethernet-PG/OP-Kanal

- 7. Bestätigen Sie mit [IP-Adresse zuweisen] Ihre Eingabe.
 - ⇒ Direkt nach der Zuweisung ist der Ethernet-PG/OP-Kanal über die angegebenen IP-Adress-Daten online erreichbar. Der Wert bleibt bestehen, solange dieser nicht neu zugewiesen, mit einer Hardware-Projektierung überschrieben oder Rücksetzen auf Werkseinstellung ausgeführt wird.

Projektnavigation	Online-Zugänge	IP-Adresse zuweisen
Online-Zugänge Netzadapter Erreichbare Teilnehmer Onboard PG/OP [00-2 Online & Diagnose	Diagnose Allgemein Funktionen IP-Adresse zuweisen Name zuweisen Rücksetzen auf Werks	IP-Adresse: 0 .0 .0 .0 Subnetzmaske: 0 .0 .0 .0 Router-Adresse: 0 .0 .0 .0 IP-Adresse zuweisen .0 .0 .0

Systembedingt kann es zu einer Meldung kommen, dass die IP-Adresse nicht vergeben werden konnte. Diese Meldung können Sie ignorieren.

IP-Adress-Parameter in Projekt übernehmen

- **1.** Öffnen Sie Ihr Projekt.
- 2. Projektieren Sie, wenn nicht schon geschehen, in der "Gerätekonfiguration" eine Siemens CPU 315-2DP (6ES7 315-2AG10-0AB0 V2.6.).
- **3.** Projektieren Sie Ihre System 200V Module.
- 4. Projektieren Sie für den Ethernet-PG/OP-Kanal immer als letztes Modul nach den reell gesteckten Modulen einen Siemens CP 343-1 (6GK7 343-1EX11 0XE0).
- 5. Offnen Sie durch Klick auf den CP 343-1EX11 den "Eigenschaften"-Dialog und geben Sie für den CP in den "Eigenschaften" unter "Ethernet-Adresse" die zuvor zugewiesenen IP-Adress-Daten an.
- 6. Übertragen Sie Ihr Projekt.

TIA Portal - Projekt transferieren

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	1	CPU	
DI	2	DI	
DO	3	DO	
DIO	4	DIO	
Al	5	AI	
AO	6	AO	
CP 343-1	7	CP 343-1	

6.6 TIA Portal - Projekt transferieren

Übersicht	Sie haben folgende Möglichkeiten für den Projekt-Transfer in die CPU:	
	 Transfer über MPI Transfer über Ethernet 	
	 Transfer über Speicherkarte 	
Transfer über MPI	Aktuell werden die VIPA Programmierkabel für den Transfer über MPI nicht unterstützt. Dies ist ausschließlich über Programmierkabel von Siemens möglich.	
	1. Stellen Sie mit dem entsprechenden Programmierkabel eine Verbindung über MPI mit ihrer CPU her. Informationen hierzu finden Sie in der zugehörigen Dokumentation zu Ihrem Programmierkabel.	
	2. Schalten Sie die Spannungsversorgung ihrer CPU ein und starten Sie das Siemens TIA Portal mit Ihrem Projekt.	
	3. Markieren Sie in der <i>Projektnavigation</i> Ihre CPU und wählen Sie für den Transfer der Hardware-Konfiguration "Kontextmenü → Laden in Gerät → Hardwarekonfiguration".	
	 Ihr SPS-Programm übertragen Sie mit "Kontextmenü → Laden in Gerät → Software". Systembedingt müssen Sie Hardware-Konfiguration und SPS-Programm getrennt übertragen. 	
Transfer über Ethernet	Die CPU besitzt für den Transfer über Ethernet folgende Schnittstelle:	
	Ethernet-PG/OP-Kanal	
Initialisierung	Damit Sie auf die entsprechende Ethernet-Schnittstelle online zugreifen können, müssen Sie dieser durch die "Initialisierung" bzw. "Urtaufe" IP-Adress-Parameter zuweisen.	
	Bitte beachten Sie, dass Sie die IP-Adress-Daten in Ihr Projekt für den CP 343-1 übernehmen.	

TIA Portal - Projekt transferieren

Transfer	Für den Transfer verbinden Sie, wenn nicht schon geschehen, die entsprechende Ethernet-Buchse mit Ihrem Ethernet.			
	 Öffnen Sie Ihr Projekt im Siemens TIA Portal. 			
	Sector Sie in der Projektnavigation auf Online-Zugänge und wählen Sie hier durch Doppelklick Ihre Netzwerkkarte aus, welche mit der Ethernet-PG/OP-Schnittstelle verbunden ist.			
	4. Wählen Sie in der <i>Projektnavigation</i> Ihre CPU aus und klicken Sie auf [Online verbinden].			
	5. Geben Sie den Zugriffweg vor, indem Sie als Schnittstellentyp "PN/IE" einstellen und als PG/PC-Schnittstelle Ihre Netzwerk- karte und das entsprechende Subnetz auswählen. Daraufhin wird ein Netz-Scan ausgeführt und der entsprechende Verbin- dungspartner aufgelistet.			
	6. Stellen Sie mit [Verbinden] eine Online-Verbindung her.			
	7. ▶ Gehen Sie auf "Online → Laden in Gerät".			
	Der entsprechende Baustein wird übersetzt und nach einer Abfrage an das Zielgerät übertragen. Sofern keine neue Hardware-Konfiguration in die CPU übertragen wird, wird die hier angegebene Ethernet-Verbindung dauerhaft als Trans- ferkanal im Projekt gespeichert.			
Transfer über Speicher- karte	Die Speicherkarte dient als externes Speichermedium. Es dürfen sich mehrere Projekte und Unterverzeichnisse auf einer Speicherkarte befinden. Bitte beachten Sie, dass sich Ihre aktuelle Projektierung im Root-Verzeichnis befindet und einen der folgenden Dateinamen hat:			
	S7PROG.WLDAUTOLOAD.WLD			
	 Erzeugen Sie im Siemens TIA Portal mit "Projekt → Memory-Card-Datei → Neu" eine wld-Datei. 			
	⇒ Die wld-Datei wird in der <i>Projektnavigation</i> unter "SIMATIC Card Reader" als "Memory Card File" aufgeführt.			
	2. Kopieren Sie Ihre Bausteine aus <i>Programmbausteine</i> in die wld- Datei. Hierbei werden automatisch die Hardware-Konfigurations- daten als "Systemdaten" in die wld-Datei kopiert.			
Transfer Speicherkarte → CPU	Das Übertragen des Anwenderprogramms von der Speicherkarte in die CPU erfolgt je nach Dateiname nach Urlöschen oder nach PowerON.			
	S7PROG.WLD wird nach Urlöschen von der Speicherkarte			
	 AUTOLOAD.WLD wird nach NetzEIN von der Speicherkarte gelesen. 			
	Das Blinken der MC-LED der CPU kennzeichnet den Übertragungs- vorgang. Bitte beachten Sie, dass Ihr Anwenderspeicher ausreichend Speicherplatz für Ihr Anwenderprogramm bietet, ansonsten wird Ihr Anwenderprogramm unvollständig geladen und die SF-LED leuchtet.			

TIA Portal - Projekt transferieren

Transfer CPU → Spei- cherkarte	Bei einer in der CPU gesteckten Speicherkarte wird durch einen Schreibbefehl der Inhalt des RAMs als S7PROG.WLD auf die Spei- cherkarte übertragen. Den Schreibbefehl finden Sie im Siemens TIA Portal in der Task Card "Online-Tools" im Kommandobereich unter "Speicher" als Schaltfläche [Kopiere RAM nach ROM]. Während des Schreibvorgangs blinkt die MC-LED. Erlischt die LED, ist der Schreib- vorgang beendet. Soll dieses Projekt automatisch nach einem NetzEIN von der Speicherkarte geladen werden, so müssen Sie dieses auf der Speicherkarte in <i>AUTOLOAD.WLD</i> umbenennen.			
	 Bitte beachten Sie, dass im Siemens TIA Portal bei man- chen CPU-Typen die Schaltfläche [Kopiere RAM nach ROM] nicht verfügbar ist. 			
Kontrolle des Transfer- vorgangs	Nach einem Zugriff auf die Speicherkarte erfolgt ein Diagnose-Eintrag der CPU. Zur Anzeige der Diagnoseeinträge gehen Sie im Siemens			

Nach einem Zugriff auf die Speicherkarte erfolgt ein Diagnose-Eintrag der CPU. Zur Anzeige der Diagnoseeinträge gehen Sie im Siemens TIA Portal auf *Online & Diagnose*. Hier haben Sie Zugriff auf den "Diagnosepuffer". Still *"Diagnose-Einträge" auf Seite 58*