VIPA System 200V

CPU | Handbuch HB97D_CPU | RD_21x-2BS03 | Rev. 15/16 April 2015

Copyright © VIPA GmbH. All Rights Reserved.

Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch -extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH Ohmstraße 4, D-91074 Herzogenaurach, Germany Tel.: +49 (91 32) 744 -0 Fax.: +49 9132 744 1864 EMail: info@vipa.de http://www.vipa.com

Hinweis

Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informationen bleibt jedoch vorbehalten.

Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.

EG-Konformitätserklärung

Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften übereinstimmen.

Die Übereinstimmung ist durch CE-Zeichen gekennzeichnet.

Informationen zur Konformitätserklärung

Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH.

Warenzeichen

VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.

SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH.

SIMATIC, STEP, SINEC, TIA Portal, S7-300 und S7-400 sind eingetragene Warenzeichen der Siemens AG.

Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.

Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.

Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

Dokument-Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefax: +49 9132 744 1204 EMail: documentation@vipa.de

Technischer Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefon: +49 9132 744 1150 (Hotline) EMail: support@vipa.de

Inhaltsverzeichnis

Über dieses Handbuch	1
Sicherheitshinweise	2
Teil 1 Grundlagen und Montage	1-1
Sicherheitshinweis für den Benutzer	1-2
Systemvorstellung	1-3
Abmessungen	1-5
Montage	1-7
Demontage und Modultausch	1-11
Verdrahtung	1-12
Aufbaurichtlinien	1-14
Allgemeine Daten	1-17
Teil 2 Hardwarebeschreibung	2-1
Leistungsmerkmale	2-2
Aufbau	2-3
Technische Daten	2-7
Teil 3 Einsatz CPU 21x-2BS03	3-1
Montage	
Anlaufverhalten	
Adressierung	
Hinweise zum Einsatz der MPI-Schnittstelle	
Hardware-Konfiguration - CPU	
Hardware-Konfiguration - I/O-Module	3-8
Einstellung CPU-Parameter	3-9
Projekt transferieren	3-13
Betriebszustände	3-17
Urlöschen	3-19
Firmwareupdate	3-21
Rücksetzen auf Werkseinstellung	3-23
VIPA-spezifische Diagnose-Einträge	
Mit Testfunktionen Variablen steuern und beobachten	
Teil 4 Serielle Kommunikation	
Schnelleinstieg	
Protokolle und Prozeduren	
RS232-Schnittstelle	
Kommunikationsprinzip	
Schnittstellen initialisieren	
Schnittstellen-Parameter	4-13
Schnittstellenkommunikation	4-16

Über dieses Handbuch

Das Handbuch beschreibt die CPU 21x-2BS03 aus dem System 200V von VIPA. Hier finden Sie alle Informationen, die für Inbetriebnahme und Betrieb erforderlich sind.

Überblick Teil 1: Grundlagen und Montage

Kernthema dieses Kapitels ist die Vorstellung des System 200V von VIPA. Hier finden Sie alle Informationen, die für den Aufbau und die Verdrahtung einer Steuerung aus den Komponenten des System 200V erforderlich sind. Neben den Abmessungen sind hier auch die allgemeinen technischen Daten des System 200V aufgeführt.

Teil 2: Hardwarebeschreibung

Hier wird näher auf die Hardware-Komponenten der CPU eingegangen. Die Technischen Daten finden Sie am Ende des Kapitels.

Teil 3: Einsatz CPU 21x-2BS03

In diesem Kapitel ist der Einsatz der CPU im System 200V beschrieben. Die Beschreibung bezieht sich hierbei auf die CPU direkt und auf den Einsatz in Verbindung mit Peripherie-Modulen, die sich zusammen mit der CPU auf einer Profilschiene befinden und über den Rückwandbus verbunden sind.

Teil 4: Serielle Kommunikation

Inhalt dieses Kapitels ist der Einsatz der zwei seriellen RS232-Schnittstellen der CPU. Sie erhalten hier alle Informationen, die zum Einsatz der seriellen Schnittstelle, der CPU erforderlich sind.

Zielsetzung und Inhalt	Das Handbuch beschreibt die CPU 21x-2BS03 aus dem System 200V von VIPA. Beschrieben wird Aufbau, Projektierung und Anwendung.			
	Dieses Handbuch ist Bestandteil des Dokumentationspakets mit der BestNr.: HB97D_CPU und gültig für :			
	Produkt	BestNr.	ab Stand:	CPU-FW
	CPU 21xSER	VIPA CPU 21x-2BS03	01	V 4.1.7
Zielgruppe	Das Handbuch is Automatisierungs	t geschrieben für Anwer technik.	nder mit Grundke	nntnissen in der
Aufbau des Handbuchs	Das Handbuch is abgeschlossene 7	st in Kapitel gegliedert Гhematik.	. Jedes Kapitel	beschreibt eine
Orientierung im Dokument	 Als Orientierungshilfe stehen im Handbuch zur Verfügung: Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs Übersicht der beschriebenen Themen am Anfang jedes Kapitels 			
Verfügbarkeit	 Das Handbuch ist verfügbar in: gedruckter Form auf Papier in elektronischer Form als PDF-Datei (Adobe Acrobat Reader) 			
Piktogramme Signalwörter	Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausgezeichnet:			
$\underline{\wedge}$	Gefahr! Unmittelbar drohende oder mögliche Gefahr. Personenschäden sind möglich.			
$\underline{\wedge}$	Achtung! Bei Nichtbefolgen sind Sachschäden möglich.			
1	Hinweis! Zusätzliche Informationen und nützliche Tipps			

Sicherheitshinweise

Bestimmungsgemäße Verwendung Die CPU 21x ist konstruiert und gefertigt für:

- alle VIPA System-200V-Komponenten
- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

Gefahr!

Das Gerät ist nicht zugelassen für den Einsatz

• in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Hardware-Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Hardware-Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

Entsorgung Zur Entsorgung des Geräts nationale Vorschriften beachten!

Teil 1 Grundlagen und Montage

ÜbersichtKernthema dieses Kapitels ist die Vorstellung des System 200V von VIPA.
Hier finden Sie alle Informationen, die für den Aufbau und die Verdrahtung
einer Steuerung aus den Komponenten des System 200V erforderlich sind.
Neben den Abmessungen sind hier auch die allgemeinen technischen
Daten des System 200V aufgeführt.

Inhalt	Thema	Seite
	Teil 1 Grundlagen und Montage	
	Sicherheitshinweis für den Benutzer	1-2
	Systemvorstellung	
	Abmessungen	
	Montage	
	Demontage und Modultausch	
	Verdrahtung	
	Aufbaurichtlinien	
	Allgemeine Daten	1-17

Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen.

Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin.

Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen.

Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen.

Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Verwenden Sie für den Versand immer die Originalverpackung.

Messen und Ändern von elektrostatisch gefährdeten Baugruppen

Baugruppen

Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potentialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

Achtung!

Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

Systemvorstellung

Übersicht

Das System 200V ist ein modular aufgebautes Automatisierungssystem für die Montage auf einer 35mm Profilschiene. Mittels der Peripherie-Module in 4-, 8- und 16-Kanalausführung können Sie dieses System passgenau an Ihre Automatisierungsaufgaben adaptieren.

Komponenten

Das System 200V besteht aus folgenden Komponenten:

- Kopfmodule wie CPU und Buskoppler
- Peripheriemodule wie I/O-, Funktions- und Kommunikationsmodule
- Netzteile
- Erweiterungsmodule

Kopfmodule

Beim Kopfmodul sind CPU bzw. Bus-Interface und DC 24V Spannungsversorgung in ein Gehäuse integriert.

Über die integrierte Spannungsversorgung werden sowohl CPU bzw. Bus-Interface als auch die Elektronik der angebunden Peripheriemodule versorgt.

Peripheriemodule

Die einzelnen Module werden direkt auf eine 35mm-Profilschiene montiert und über Busverbinder, die vorher in die Profilschiene eingelegt werden, an das Kopfmodul gekoppelt.

Die meisten Peripheriemodule besitzen einen 10- bzw. 18poligen Steckverbinder. Über diesen Steckverbinder werden Signal- und Versorgungsleitungen mit den Modulen verbunden.

Netzteile

Erweiterungsmodule

Die DC 24V Spannungsversorgung kann im System 200V entweder extern oder über eigens hierfür entwickelte Netzteile erfolgen.

Das Netzteil kann zusammen mit dem System 200V Modulen auf die Profilschiene montiert werden. Es besitzt keine Verbindung zum Rückwandbus.

Die Erweiterungsmodule sind unter anderem Ergänzungs-Module für 2- oder 3-Draht Installation.

Die Module haben keine Verbindung zum Rückwandbus.

Aufbau/Maße

- Profilschiene 35mm
- Maße Grundgehäuse: 1fach breit: (HxBxT) in mm: 76x25,4x74 in Zoll: 3x1x3 2fach breit: (HxBxT) in mm: 76x50,8x74 in Zoll: 3x2x3

Montage

Bitte beachten Sie, dass Sie Kopfmodule nur auf Steckplatz 2 bzw. 1 und 2 (wenn doppelt breit) stecken dürfen.

[1]	Kopfmodul (doppelt breit)
[2]	Kopfmodul (einfach breit)
[3]	Peripheriemodule
[4]	Führungsleisten

Hinweis

Sie können maximal 32 Module stecken, hierbei ist zu beachten, dass der **Summenstrom** von **3,5A** am Rückwandbus nicht überschritten wird!

Bitte montieren Sie Module mit hoher Stromaufnahme direkt neben das Kopfmodul.

Abmessungen

Maße	1fach breit (HxBxT) in mm: 76 x 25,4 x 74
Grundgehäuse	2fach breit (HxBxT) in mm: 76 x 50,8 x 74

Montagemaße

Maße montiert und verdrahtet

Ein- / Ausgabemodule

Montage

Allgemein Die einzelnen Module werden direkt auf eine 35mm-Profilschiene montiert und über Rückwandbus-Verbinder verbunden. Vor der Montage ist der Rückwandbus-Verbinder in die Profilschiene einzulegen.

Profilschiene Für die Montage können Sie folgende 35mm-Profilschienen verwenden:

Bestellnummer	Bezeichnung	Beschreibung
290-1AF00	35mm-Profilschiene	Länge 2000mm, Höhe 15mm
290-1AF30	35mm-Profilschiene	Länge 530mm, Höhe 15mm

Busverbinder Für die Kommunikation der Module untereinander wird beim System 200V ein Rückwandbus-Verbinder eingesetzt. Die Rückwandbusverbinder sind isoliert und bei VIPA in 1-, 2-, 4- oder 8facher Breite erhältlich. Nachfolgend sehen Sie einen 1fach und einen 4fach Busverbinder:

Der Busverbinder wird in die Profilschiene eingelegt, bis dieser sicher einrastet, so dass die Bus-Anschlüsse aus der Profilschiene herausschauen.

Bestellnummer	Bezeichnung	Beschreibung
290-0AA10	Busverbinder	1fach
290-0AA20	Busverbinder	2fach
290-0AA40	Busverbinder	4fach
290-0AA80	Busverbinder	8fach

Montage auf Profilschiene

Die nachfolgende Skizze zeigt einen 4fach-Busverbinder in einer Profilschiene und die Steckplätze für die Module.

Die einzelnen Modulsteckplätze sind durch Führungsleisten abgegrenzt.

- [1] Kopfmodul (doppelt breit)
- [2] Kopfmodul (einfach breit)
- [3] Peripheriemodule
- [4] Führungsleisten

Montage unter Berücksichtigung der Stromaufnahme

- Verwenden Sie möglichst lange Busverbinder.
- Ordnen Sie Module mit hohem Stromverbrauch direkt rechts neben Ihrem Kopfmodul an. Im Service-Bereich von www.vipa.com finden Sie alle Stromaufnahmen des System 200V in einer Liste zusammengefasst.

Montagemöglichkeiten

waagrechter Aufbau

liegender Aufbau

Ŷ

senkrechter Beachten Sie bitte die hierbei zulässigen Umgebungs-Aufbau temperaturen:

- waagrechter Aufbau: von 0 bis 60°C
- senkrechter Aufbau: von 0 bis 40°C
- liegender Aufbau: von 0 bis 40°C

Der waagrechte Aufbau beginnt immer links mit einem Kopfmodul. Rechts daneben sind die Peripherie-Module zu stecken.

Es dürfen bis zu 32 Peripherie-Module gesteckt werden.

Bitte bei der Montage beachten!

- Schalten Sie die Stromversorgung aus bevor Sie Module stecken bzw. abziehen!
- Halten Sie ab der Mitte der Profilschiene nach oben einen Montageabstand von mindestens 80mm und nach unten von 60mm ein.
- Eine Zeile wird immer von links nach rechts aufgebaut und beginnt immer mit einem Kopfmodul.
- [1] Kopfmodul (doppelt breit)
- [2] Kopfmodul (einfach breit)
- [3] Peripheriemodule
- [4] Führungsleisten
- Module müssen immer direkt nebeneinander gesteckt werden. Lücken sind nicht zulässig, da ansonsten der Rückwandbus unterbrochen ist.
- Ein Modul ist erst dann gesteckt und elektrisch verbunden, wenn es hörbar einrastet.
- Steckplätze rechts nach dem letzten Modul d
 ürfen frei bleiben.

Hinweis!

Am Rückwandbus dürfen sich maximal 32 Module befinden. Hierbei darf der **Summenstrom** von **3,5A darf** nicht überschritten werden!

Montage Vorgehensweise

- Montieren Sie die Profilschiene. Bitte beachten Sie, dass Sie ab der Mitte der Profilschiene nach oben einen Modul-Montageabstand von mindestens 80mm und nach unten von 60mm einhalten.
- Drücken Sie den Busverbinder in die Profilschiene, bis dieser sicher einrastet, so dass die Bus-Anschlüsse aus der Profilschiene herausschauen. Sie haben nun die Grundlage zur Montage Ihrer Module.
- Beginnen Sie ganz links mit dem Kopfmodul, wie CPU, PC oder Buskoppler und stecken Sie rechts daneben Ihre Peripherie-Module.

- [1] Kopfmodul (doppelt breit)
- [2] Kopfmodul (einfach breit)
- [3] Peripheriemodule
- [4] Führungsleisten
- Setzen Sie das zu steckende Modul von oben in einem Winkel von ca. 45 Grad auf die Profilschiene und drehen Sie das Modul nach unten, bis es hörbar auf der Profilschiene einrastet. Nur bei eingerasteten Modulen ist eine Verbindung zum Rückwandbus sichergestellt.

Achtung!

Module dürfen nur im spannungslosen Zustand gesteckt bzw. gezogen werden!

Demontage und Modultausch

- Entfernen Sie falls vorhanden die Verdrahtung an dem Modul, indem Sie die beiden Verriegelungshebel am Steckverbinder betätigen und den Steckverbinder abziehen.
- Zur Demontage des Moduls befindet sich am Gehäuseunterteil eine gefederter Demontageschlitz. Stecken Sie, wie gezeigt, einen Schraubendreher in den Demontageschlitz.
- Entriegeln Sie durch Druck des Schraubendrehers nach oben das Modul.
- Ziehen Sie nun das Modul nach vorn und ziehen Sie das Modul mit einer Drehung nach oben ab.

Achtung!

Module dürfen nur im spannungslosen Zustand gesteckt bzw. gezogen werden!

Bitte beachten Sie, dass durch die Demontage von Modulen der Rückwandbus an der entsprechenden Stelle unterbrochen wird!

Verdrahtung

Übersicht

Die meisten Peripherie-Module besitzen einen 10poligen bzw. 18poligen Steckverbinder. Über diesen Steckverbinder werden Signal- und Versorgungsleitungen mit den Modulen verbunden.

Bei der Verdrahtung werden Steckverbinder mit Federklemmtechnik eingesetzt.

Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen.

Im Gegensatz zur Schraubverbindung, ist diese Verbindungsart erschütterungssicher. Die Steckerbelegung der Peripherie-Module finden Sie in der Beschreibung zu den Modulen.

Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² (bis 1,5mm² bei 18poligen Steckverbindern) anschließen.

Folgende Abbildung zeigt ein Modul mit einem 10poligen Steckverbinder.

- [1] Entriegelungshebel
- [2] Pin-Nr. am Modul
- [3] Pin-Nr. am Steckverbinder
- [4] Anschluss für Draht
- [5] Öffnung für Schraubendreher

Hinweis!

Die Federklemme wird zerstört, wenn Sie den Schraubendreher in die Öffnung für die Leitungen stecken!

Drücken Sie den Schraubendreher nur in die rechteckigen Öffnungen des Steckverbinders!

Verdrahtung Vorgehensweise

Der Steckerverbinder ist nun in einer festen Position und kann leicht verdrahtet werden.

Die nachfolgende Abfolge stellt die Schritte der Verdrahtung in der Draufsicht dar.

- Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung.
- Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² (bei 18poligen Steckverbindern bis 1,5mm²) anschließen.

• Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit dem Steckverbinder verbunden.

Hinweis!

Verdrahten Sie zuerst die Versorgungsleitungen (Spannungsversorgung) und dann die Signalleitungen (Ein- und Ausgänge)!

Aufbaurichtlinien

Allgemeines Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau von System 200V Systemen. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV), sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.

Was bedeutet
 Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.
 Alle System 200V Komponenten sind für den Einsatz in rauen Industrieumgebungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störquellen in die Betrachtung einbeziehen.

MöglicheElektromagnetische Störungen können sich auf unterschiedlichen PfadenStöreinwirkungenin Ihre Steuerung einkoppeln:

- Elektromagnetische Felder (HF-Einkopplung)
- Magnetische Felder mit energietechnischer Frequenz
- E/A-Signalleitungen
- Bus-System
- Stromversorgung
- Schutzleiter

Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung.

- Man unterscheidet:
- galvanische Kopplung
- kapazitive Kopplung
- induktive Kopplung
- Strahlungskopplung

Grundregeln zur Sicherstellung der EMV Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elementarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.

- Achten sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile.
 - Stellen sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her.
 - Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm.
 - Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet.
- Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung.
 - Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen).
 - Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.
 - Führen sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).
- Achten sie auf die einwandfreie Befestigung der Leitungsschirme.
 - Datenleitungen sind geschirmt zu verlegen (Details siehe unten).
 - Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
 - Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
 - Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
 - Verwenden Sie für geschirmte Datenleitungen metallische oder metallisierte Steckergehäuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
 - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
 - Vermeiden Sie bei der Beleuchtung von Schränken Leuchtstofflampen.
- Schaffen Sie ein einheitliches Bezugspotenzial und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
 - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
 - Verbinden Sie Anlagenteile und Schränke mit dem System SLIO sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
 - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

Schirmung von
LeitungenElektrische, magnetische oder elektromagnetische Störfelder werden durch
eine Schirmung geschwächt; man spricht hier von einer Dämpfung.Uber die mit dem Oehäuse leitend werbundene Schirmeschiene werden

Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störquelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich.

Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:

- die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann
- Analogsignale (einige mV bzw. µA) übertragen werden
- Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen f
 ür serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergehäuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/Schutzleiter-schiene aufzulegen.
- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zum System 200V Modul weiter, legen Sie ihn dort jedoch **nicht** erneut auf!

Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen. Abhilfe: Potenzialausgleichsleitung.

Allgemeine Daten

Aufbau/Maße	 Profilschiene 35mm Peripherie-Module mit seitlich versenkbaren Beschriftungsstreifen Maße Grundgehäuse: 1fach breit: (HxBxT) in mm: 76x25,4x74 in Zoll: 3x1x3 2fach breit: (HxBxT) in mm: 76x50,8x74 in Zoll: 3x2x3
Betriebssicherheit	 Anschluss über Federzugklemmen an Frontstecker, Aderquerschnitt 0,08 2,5mm² bzw. 1,5mm² (18-fach Stecker) Vollisolierung der Verdrahtung bei Modulwechsel

• Potenzialtrennung aller Module zum Rückwandbus

Allgemeine Daten

Konformität und Approbation		
Konformität		
CE	2006/95/EG	Niederspannungsrichtlinie
	2004/108/EG	EMV-Richtlinie
Approbation		
UL	UL 508	Zulassung für USA und Kanada
Sonstiges		
RoHS	2011/65/EU	Produkte bleifrei; Richtlinie zur Beschränkung der
		Verwendung bestimmter gefährlicher Stoffe in
		Elektro- und Elektronikgeräten

Personenschutz und Geräteschutz			
Schutzart	-	IP20	
Potenzialtrennung			
Zum Feldbus	-	Galvanisch entkoppelt	
Zur Prozessebene	-	Galvanisch entkoppelt	
Isolationsfestigkeit	EN 61131-2	-	
Isolationsspannung gegen Bezugserd	le		
Eingänge / Ausgänge	-	AC / DC 50V, bei Prüfspannung AC 500V	
Schutzmaßnahmen	-	gegen Kurzschluss	

Umgebungsbedingungen gemäß EN 61131-2		
Klimatisch		
Lagerung /Transport	EN 60068-2-14	-25+70°C
Betrieb		
Horizontaler Einbau	EN 61131-2	0+60°C
Vertikaler Einbau	EN 61131-2	0+60°C
Luftfeuchtigkeit	EN 60068-2-30	RH1 (ohne Betauung, relative Feuchte 10 95%)
Verschmutzung	EN 61131-2	Verschmutzungsgrad 2
Mechanisch		
Schwingung	EN 60068-2-6	1g, 9Hz 150Hz
Schock	EN 60068-2-27	15g, 11ms

Montagebedingungen		
Einbauort	-	Im Schaltschrank
Einbaulage	-	Horizontal und vertikal

EMV	Norm		Bemerkungen
Störaussendung	EN 61000-6-4		Class A (Industriebereich)
Störfestigkeit	EN 61000-6-2		Industriebereich
ZUIIE D		EN 61000-4-2	ESD
			8kV bei Luftentladung (Schärfegrad 3),
			4kV bei Kontaktentladung (Schärfegrad 2)
		EN 61000-4-3	HF-Einstrahlung (Gehäuse)
			80MHz 1000MHz, 10V/m, 80% AM (1kHz)
			1,4GHz 2,0GHz, 3V/m, 80% AM (1kHz)
			2GHz 2,7GHz, 1V/m, 80% AM (1kHz)
		EN 61000-4-6	HF-Leitungsgeführt
			150kHz 80MHz, 10V, 80% AM (1kHz)
		EN 61000-4-4	Burst, Schärfegrad 3
		EN 61000-4-5	Surge, Installationsklasse 3 *)

*) Aufgrund der energiereichen Einzelimpulse ist bei Surge eine angemessene externe Beschaltung mit Blitzschutzelementen wie z.B. Blitzstromableitern und Überspannungsableitern erforderlich.

Teil 2 Hardwarebeschreibung

Überblick Hier wird näher auf die Hardware-Komponenten der CPU eingegangen. Die Technischen Daten finden Sie am Ende des Kapitels.

Inhalt	Thema	Thema	
	Teil 2	Hardwarebeschreibung	
	Leistu	ngsmerkmale	
	Aufbau	 J	
	Techn	sche Daten	

Leistungsmerkmale

CPU 21x-2BS03 • Befehlskompatibel zu STEP[®]7 von Siemens

- Projektierung über den Siemens SIMATIC Manager
- Integrierter V-Bus-Kontroller zur Steuerung der System 200V Peripherie-Module
- Integriertes 24V-Netzteil
- Gesamtadressraum: 1024 Byte Eingänge, 1024 Byte Ausgänge (je 128 Byte Prozessabbild)
- Arbeitsspeicher 96 / 128kByte "on board"
- Ladespeicher 144 / 192kByte "on board"
- Steckplatz für MMC (für Anwenderprogramm)
- Akkugepufferte Uhr
- MP²I-Schnittstelle zur Datenübertragung
- Status-LEDs für Betriebszustand und Diagnose
- Serielle Kommunikation über 2x RS232-Schnittstellen

Bestelldaten

Тур	Bestellnummer	Beschreibung
CPU 214SER	VIPA 214-2BS03	SPS CPU 214 mit 2xRS232-Schnittstellen
		und 96/144kByte Arbeits-/Lade-Speicher
CPU 215SER	VIPA 215-2BS03	SPS CPU 215 mit 2xRS232-Schnittstellen
		und 128/192kByte Arbeits-/Lade-Speicher

Aufbau

Die CPU besitzt ein eingebautes Netzteil. Der Anschluss erfolgt über zwei Spannungsversorgung Anschlussklemmen an der Frontseite. Das Netzteil ist mit DC 24V (20,4 ... 28,8V) zu versorgen. Über die Versorgungsspannung werden neben der CPU-Elektronik auch die angeschlossenen Module über den Rückwandbus versorgt. Die CPU-Elektronik ist nicht galvanisch von der Versorgungsspannung getrennt. Das Netzteil ist gegen Verpolung und Überstrom geschützt. **Hinweis!** Bitte achten Sie auf richtige Polarität bei der Spannungsversorgung. MP²I-Schnittstelle Die MPI-Schnittstelle dient zur Datenübertragung zwischen CPUs und PCs. In einer Buskommunikation können Sie Programme und Daten zwischen den CPUs transferieren, die über MPI verbunden sind. Zur seriellen Übertragung von Ihrem PC aus ist ein MPI-Umsetzer erforderlich. Sie können aber auch von VIPA das "Green Cable" (Best.-Nr. VIPA 950-0KB00) beziehen. Hiermit können Sie nur bei Systemkomponenten von VIPA als Punkt-zu-Punkt-Verbindung seriell über die MPI-Schnittstelle Ihre Daten übertragen. Bitte beachten Sie die "Hinweise zum Einsatz der MPI-Schnittstelle" in Teil "Einsatz CPU 21x". RS232-Zusätzlich zu den aufgeführten Komponenten besitzt die CPU zwei RS232-Schnittstellen Schnittstellen. COM1, COM2 Mit diesen 9poligen Schnittstellen können Sie serielle Punkt-zu-Punkt-Verbindungen über RS232 herstellen.

Hinweis!

Näheres zu seriellen Kommunikation finden Sie im Kapitel "Serielle Kommunikation".

Speichermanagement

Die CPUs haben einen Arbeitsspeicher und einen Ladespeicher integriert. Die Speicher sind batterie-gepuffert.

Bestellnummer	Arbeitsspeicher	Ladespeicher
VIPA 214-2BS03	96kByte	144kByte
VIPA 215-2BS03	128kByte	192kByte

Im Ladespeicher sind Programmcode und Bausteine zusammen mit den Header-Informationen abgelegt.

Die für den Programmablauf relevanten Programm-Teile und Bausteine werden bei der Programmabarbeitung in den Arbeitsspeicher übertragen.

Betriebsartenschalter

Mit dem Betriebsartenschalter können Sie bei der CPU zwischen den Betriebsarten STOP und RUN wählen. Beim Übergang vom Betriebszustand STOP nach RUN durchläuft die CPU

RN ST MR

Mit der Tasterstellung MR (Memory Reset) fordern Sie das Urlöschen an mit anschließendem Laden von Speicherkarte, sofern dort ein Projekt hinterlegt ist.

Steckplatz MMC-Speicherkarte

Als externes Speichermedium können Sie hier ein MMC-Speicher-Modul von VIPA einsetzen (Best.-Nr.: VIPA 953-0KX10).

Ein Zugriff auf die MMC erfolgt immer nach Urlöschen.

den Betriebszustand ANLAUF.

Batteriepufferung für Uhr und RAM Jede CPU 21x besitzt einen internen Akku, der zur Sicherung des RAMs bei Stromausfall dient. Zusätzlich wird die interne Uhr über den Akku gepuffert.

Der Akku wird direkt über die eingebaute Spannungsversorgung über eine Ladeelektronik geladen und gewährleistet eine Pufferung für max. 30 Tage.

Achtung!

Nach längerer Lagerung könnte der Puffer Akku stark entladen sein. Bitte schließen Sie zur Erreichung der vollen Pufferkapazität die CPU mindestens für 24 Stunden an die Spannungsversorgung an.

Bei leerem Akku läuft die CPU nach einem Spannungsreset mit einem BAT-Fehler an und führt ein automatisches Urlöschen der CPU durch, da der RAM-Inhalt bei leerem Akku undefiniert ist.

LEDs CPU

Die CPU besitzt auf der Front LEDs. Die Verwendung und die jeweiligen Farben der LEDs finden Sie nachfolgend beschrieben.

Bezeichnung	Farbe	Bedeutung
PW	Grün	Signalisiert die eingeschaltete CPU.
R	Grün	CPU befindet sich in RUN-Betriebszustand.
S	Gelb	CPU befindet sich in STOP-Betriebszustand.
SF	Rot	Leuchtet bei System-Fehler (Hardware-Defekt)
FC	Gelb	Leuchtet, sobald Variablen geforced (fixiert) werden.
MC	Gelb	Ein Blinken zeigt Zugriffe auf die MMC an.

LEDs RS232

Die LEDs der RS232-Schnittstellen befinden sich auf der Front der linken Gehäusehälfte und dienen der Diagnose. Die Verwendung und die jeweiligen Farben dieser LEDs finden Sie in der nachfolgenden Tabelle.

Bezeichnung	Farbe	Bedeutung
RN	Grün	Kommunikations-Prozessor läuft
ER1	Rot	Fehler Schnittstelle 1
Rx1	Grün	Schnittstelle 1 Daten empfangen (receive data)
Tx1	Grün	Schnittstelle 1 Daten senden (transmit data)
ER2	Rot	Fehler Schnittstelle 2
Rx2	Grün	Schnittstelle 2 Daten empfangen (receive data)
Tx2	Grün	Schnittstelle 2 Daten senden (transmit data)

Technische Daten

214-2BS03

Artikelnr.	214-2BS03
Bezeichnung	CPU 214SER
Technische Daten Stromversorgung	
Versorgungsspannung (Nennwert)	DC 24 V
Versorgungsspannung (zulässiger Bereich)	DC 20.428.8 V
Verpolschutz	\checkmark
Stromaufnahme (im Leerlauf)	90 mA
Stromaufnahme (Nennwert)	1.5 A
Einschaltstrom	65 A
2t	0.75 A ² s
max. Stromabgabe am Rückwandbus	3 A
Verlustleistung	5 W
Lade- und Arbeitsspeicher	
Ladespeicher integriert	144 KB
Ladespeicher maximal	144 KB
Arbeitsspeicher integriert	96 KB
Arbeitsspeicher maximal	96 KB
Speicher geteilt 50% Code / 50% Daten	-
Memory Card Slot	MMC-Card mit max 512 MB
Ausbau	
Baugruppenträger max	4
Baugruppen ie Baugruppenträger	in Summe max 32
Anzahl DP-Master integriert	-
Anzahl DP-Master über CP	8
Betreibbare Funktionsbaugruppen	32
Betreibbare Kommunikationsbaugruppen PtP	32
Betreibbare Kommunikationsbaugruppen I AN	-
Befehlsbearbeitungszeiten	
Bitoperation min	0.18 us
Wortoperation min	0.78 us
Festpunktarithmetik min	18.05
Gleitpunktarithmetik, min	40 us
Zeiten/Zähler und deren Remanenz	το μο
Anzahl S7-Zähler	256
S7-Zähler Remanenz	einstellbar von 0 bis 64
S7-Zähler Remanenz voreingestellt	
Anzahl SZ-Zoiton	256
ST-Zoiton Pomanonz	oinstellbar von 0 bis 128
S7-Zeiten Remanenz voreingestellt	koino Romanonz
Datenbereiche und Remanenz	
Anzahl Merker	8102 Bit
Merker Remanenz einstellbar	einstellbar von 0 bis 256
Merker Remanenz versingestellt	
	1VIBU IVIB15
Anzani Datenbausteine	2047 16 KP
Mummernhand DPa	1 2047
max Lakaldatangräße is Ablaufabana	1 2047
max. Lokaldatengröße je Ablaulebene	1024 Byte
Baustoino	
Anzahl OBs	14
	10 ND
Aproph EDo	-
Anzani FBS	
	0 1023
Anzani FUS	1024

Artikelnr.	214-2BS03
maximale FC-Größe	16 KB
Nummernband FCs	01023
maximale Schachtelungstiefe ie Prioklasse	8
maximale Schachtelungstiefe zusätzlich innerhalb	1
Fehler OB	•
Uhrzeit	
Uhr gepuffert	\checkmark
Ubr Pufferungsdauer (min.)	30 d
Art der Pufferung	Vanadium Rechargeable
	Lithium Batterie
Ladezeit für 50% Pufferungsdauer	20 h
Ladezeit für 100% Pufferungsdauer	48 h
Genauigkeit (max Abweichung ie Tag)	10 s
Anzahl Betriebsstundenzähler	8
Uhrzeit Synchronisation	-
Synchronisation über MPI	-
Synchronisation über Ethernet (NTP)	-
Adressbereiche (Fin-/Ausgänge)	
Perinherieadressbereich Eingänge	1024 Byte
Peripherieadressbereich Ausgänge	1024 Byte
Prozessabbild einstellbar	
Prozessabbild Eingänge voreingestellt	- 128 Byte
Prozessabbild Lingange voreingestellt	128 Byte
Prozessabbild Rusgange voreingestellt	128 Byte
Prozessabbild Lingange maximal	
Digitalo Eingöngo	9102
	9102
Digitale Ausgalige	512
Digitale Elligange zentral	512
Digitale Ausgange Zentral	512
	-
	-
	512
Analoge Ausgange	120
	128
Integriorte analogo Eingönge	128
	-
Integrierte analoge Ausgange	-
Clobala Detenkommunikation	•
	•
Anzani GD-Kreise max.	4 22 Dute
ST Desig Kommunikation	
S7-Dasis-Kommunikation	
S7-Basis-Kommunikation Nutzuaten je Autrag	76 Byle
S7-Kommunikation	•
S7-Kommunikation als Server	•
S7-Kommunikation als Client	- 400 Ditte
Anzahl Verbindungen gegent	
Anzani verbindungen gesamt	10
Paraiahauna	MD2I
Dezeichnung	
	RO400
Anschluss	apolige SubD Buchse
Potenzialgetrennt	-
	v
IVIP4I (MPI/KS232)	v
Punkt-zu-Punkt-Kopplung	-
Bezeichnung	COM1
Physik	RS232

Artikelnr.	214-2BS03
Anschluss	9poliger SubD Stecker
Potenzialgetrennt	-
MPI	-
MP ² I (MPI/RS232)	-
Punkt-zu-Punkt-Kopplung	\checkmark
Bezeichnung	COM2
Physik	RS232
Anschluss	9poliger SubD Stecker
Potenzialgetrennt	-
MPI	-
MP ² I (MPI/RS232)	-
Punkt-zu-Punkt-Kopplung	\checkmark
Funktionalität MPI	
Anzahl Verbindungen, max.	16
PG/OP Kommunikation	\checkmark
Routing	-
Globale Datenkommunikation	\checkmark
S7-Basis-Kommunikation	\checkmark
S7-Kommunikation	\checkmark
S7-Kommunikation als Server	\checkmark
S7-Kommunikation als Client	-
Übertragungsgeschwindigkeit, min.	19,2 kbit/s
Übertragungsgeschwindigkeit, max.	187,5 kbit/s
Point-to-Point Kommunikation	
PtP-Kommunikation	\checkmark
Schnittstelle potentialgetrennt	-
Schnittstelle RS232	\checkmark
Schnittstelle RS422	-
Schnittstelle RS485	-
Anschluss	9poliger SubD Stecker
Übertragungsgeschwindigkeit, min.	150 bit/s
Übertragungsgeschwindigkeit, max.	115,2 kbit/s
Leitungslänge, max.	15 m
Point-to-Point Protokolle	
Protokoll ASCII	✓
Protokoll STX/ETX	✓
Protokoll 3964(R)	✓
Protokoll RK512	✓
Protokoll USS Master	-
Protokoll Modbus Master	-
Protokoll Modbus Slave	-
Spezielle Protokolle	-
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	0
Parameterbytes	3
Diagnosebytes	0
Gehäuse	
Material	PPE / PA 6.6
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	50,8 x 76 x 80 mm
Gewicht	150 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL508	ja

215-2BS03

Artikelnr.	215-2BS03
Bezeichnung	CPU 215SER
Technische Daten Stromversorgung	
Versorgungsspannung (Nennwert)	DC 24 V
Versorgungsspannung (zulässiger Bereich)	DC 20,428,8 V
Verpolschutz	\checkmark
Stromaufnahme (im Leerlauf)	90 mA
Stromaufnahme (Nennwert)	1,5 A
Einschaltstrom	65 A
² t	0,75 A ² s
max. Stromabgabe am Rückwandbus	3 A
Verlustleistung	5 W
Lade- und Arbeitsspeicher	
Ladespeicher integriert	192 KB
Ladespeicher maximal	192 KB
Arbeitsspeicher integriert	128 KB
Arbeitsspeicher maximal	128 KB
Speicher geteilt 50% Code / 50% Daten	-
Memory Card Slot	MMC-Card mit max. 512 MB
Ausbau	
Baugruppenträger max.	4
Baugruppen je Baugruppenträger	in Summe max. 32
Anzahl DP-Master integriert	-
Anzahl DP-Master über CP	8
Betreibbare Funktionsbaugruppen	32
Betreibbare Kommunikationsbaugruppen PtP	32
Betreibbare Kommunikationsbaugruppen LAN	-
Befehlsbearbeitungszeiten	
Bitoperation, min.	0,18 µs
Wortoperation, min.	0,78 µs
Festpunktarithmetik, min.	1,8 µs
Gleitpunktarithmetik, min.	40 µs
Zeiten/Zähler und deren Remanenz	
Anzahl S7-Zähler	256
S7-Zähler Remanenz	einstellbar von 0 bis 64
S7-Zähler Remanenz voreingestellt	Z0 Z7
Anzahl S7-Zeiten	256
S7-Zeiten Remanenz	einstellbar von 0 bis 128
S7-Zeiten Remanenz voreingestellt	keine Remanenz
Datenbereiche und Remanenz	
Anzahl Merker	8192 Bit
Merker Remanenz einstellbar	einstellbar von 0 bis 256
Merker Remanenz voreingestellt	MB0 MB15
Anzahl Datenbausteine	2047
max. Datenbausteingröße	16 KB
Nummernband DBs	1 2047
max. Lokaldatengröße je Ablaufebene	1024 Byte
max. Lokaldatengröße je Baustein	1024 Byte
Bausteine	
Anzahl OBs	14
maximale OB-Größe	16 KB
Gesamtanzahl DBs, FBs, FCs	-
Anzahl FBs	1024
maximale FB-Größe	16 KB
Nummernband FBs	0 1023
Anzahl FCs	1024
maximale FC-Größe	16 KB
Nummernband FCs	0 1023
maximale Schachtelungstiefe je Prioklasse	8
maximale Schachtelungstiefe zusätzlich innerhalb	1
Fehler OB	
Artikelnr.	215-2BS03
--	-----------------------
Libr gepuffert	\checkmark
Uhr Bufferungedeuer (min.)	20 d
Art der Bufferung	Vanadium Bachargaphia
An der Fullerung	Lithium Battorio
Lodozoit für E0% Dufferungedeuer	
Ladezeit für 100% Pullerungsdauer	2011 40 h
Care avial ait (a see Alwasia has a is Tara)	48 11
Genauigkeit (max. Abweichung je Tag)	10 s
Anzahl Betriebsstundenzahler	8
Unrzeit Synchronisation	-
Synchronisation uber MPI	-
Synchronisation uber Ethernet (NTP)	-
Adressbereiche (Ein-/Ausgange)	
Peripherieadressbereich Eingänge	1024 Byte
Peripherieadressbereich Ausgänge	1024 Byte
Prozessabbild einstellbar	-
Prozessabbild Eingänge voreingestellt	128 Byte
Prozessabbild Ausgänge voreingestellt	128 Byte
Prozessabbild Eingänge maximal	128 Byte
Prozessabbild Ausgänge maximal	128 Byte
Digitale Eingänge	8192
Digitale Ausgänge	8192
Digitale Eingänge zentral	512
Digitale Ausgänge zentral	512
Integrierte digitale Eingänge	-
Integrierte digitale Ausgänge	-
Analoge Eingänge	512
Analoge Ausgänge	512
Analoge Eingänge zentral	128
Analoge Ausgänge zentral	128
Integrierte analoge Eingänge	-
Integrierte analoge Ausgänge	-
Kommunikationsfunktionen	
PG/OP Kommunikation	✓
Globale Datenkommunikation	\checkmark
Anzahl GD-Kreise max	4
Größe GD-Pakete max	
S7-Basis-Kommunikation	✓ ZZ Dytc
S7-Basis-Kommunikation Nutzdaton in Auftrag	76 Byto
S7-Dasis-Kommunikation Nutzuaten je Autrag	
S7 Kommunikation ale Server	·
S7-Kommunikation als Client	•
S7-Kommunikation als Client	- 100 Dite
S7-Kommunikation Nutzdaten je Auttrag	
Anzani verbindungen gesamt	16
Funktionalität Sub-D Schnittstellen	MD2L
Bezeichnung	
Physik	RS485
Anschluss	9polige SubD Buchse
Potenzialgetrennt	-
	✓ ✓
MP²I (MPI/RS232)	✓
Punkt-zu-Punkt-Kopplung	-
Bezeichnung	COM1
Physik	RS232
Anschluss	9poliger SubD Stecker
Potenzialgetrennt	-
MPI	-
MP ² I (MPI/RS232)	-
Punkt-zu-Punkt-Kopplung	\checkmark

Artikelnr.	215-2BS03
Bezeichnung	COM2
Physik	RS232
Anschluss	9poliger SubD Stecker
Potenzialgetrennt	-
MPI	-
MP ² I (MPI/RS232)	-
Punkt-zu-Punkt-Kopplung	\checkmark
Funktionalität MPI	
Anzahl Verbindungen, max.	16
PG/OP Kommunikation	✓
Routing	-
Globale Datenkommunikation	\checkmark
S7-Basis-Kommunikation	\checkmark
S7-Kommunikation	\checkmark
S7-Kommunikation als Server	\checkmark
S7-Kommunikation als Client	-
Übertragungsgeschwindigkeit, min.	19,2 kbit/s
Übertragungsgeschwindigkeit, max.	187,5 kbit/s
Point-to-Point Kommunikation	
PtP-Kommunikation	\checkmark
Schnittstelle potentialgetrennt	-
Schnittstelle RS232	\checkmark
Schnittstelle RS422	-
Schnittstelle RS485	-
Anschluss	9poliger SubD Stecker
Übertragungsgeschwindigkeit, min.	150 bit/s
Übertragungsgeschwindigkeit, max.	115,2 kbit/s
Leitungslänge, max.	15 m
Point-to-Point Protokolle	
Protokoll ASCII	\checkmark
Protokoll STX/ETX	\checkmark
Protokoll 3964(R)	\checkmark
Protokoll RK512	\checkmark
Protokoll USS Master	-
Protokoll Modbus Master	-
Protokoll Modbus Slave	-
Spezielle Protokolle	-
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	0
Parameterbytes	3
Diagnosebytes	0
Gehäuse	
Material	PPE / PA 6.6
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	50,8 x 76 x 80 mm
Gewicht	150 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL508	lia

Teil 3 Einsatz CPU 21x-2BS03

Überblick In diesem Kapitel ist der Einsatz der CPU im System 200V beschrieben. Die Beschreibung bezieht sich hierbei auf die CPU direkt und auf den Einsatz in Verbindung mit Peripherie-Modulen, die sich zusammen mit der CPU auf einer Profilschiene befinden und über den Rückwandbus verbunden sind.

Thema		Seite
Teil 3	Einsatz CPU 21x-2BS03	3-1
Monta	ge	
Anlaut	íverhalten	
Adres	sierung	
Hinwe	ise zum Einsatz der MPI-Schnittstelle	
Hardw	/are-Konfiguration - CPU	
Hardw	/are-Konfiguration - I/O-Module	
Einste	Ilung CPU-Parameter	
Projek	t transferieren	
Betrie	bszustände	
Urlösc	hen	
Firmw	areupdate	
Rücks	etzen auf Werkseinstellung	3-23
VIPA-	spezifische Diagnose-Einträge	
Mit Te	stfunktionen Variablen steuern und beobachten	

Montage

Hinweis!

Nähere Informationen zur Montage und zur Verdrahtung finden Sie im Kapitel "Grundlagen und Montage".

Anlaufverhalten

Stromversorgung einschalten	Im Auslieferungszustand ist die CPU urgelöscht. Nach dem Einschalten der Stromversorgung geht die CPU in den Betriebszustand über, der am Betriebsartenschalter eingestellt ist. Nach einem STOP→RUN Übergang geht die CPU ohne Programm in RUN.
	Hinweis! Nach längerer Lagerung könnte der Puffer Akku stark entladen sein. Bitte schließen Sie zur Erreichung der vollen Pufferkapazität die CPU mindestens für 24 Stunden an die Spannungsversorgung an.
Anlauf mit gültigen Daten in der CPU	Die CPU geht mit dem Programm, das sich im batteriegepufferten RAM befindet, in RUN.
Anlauf bei leerem Akku	Der Akku wird direkt über die eingebaute Spannungsversorgung über eine Ladeelektronik geladen und gewährleistet eine Pufferung für min. 30 Tage. Wird dieser Zeitraum überschritten, kann es zur vollkommenen Entladung des Akkus kommen. Hierbei wird das batteriegepufferte RAM gelöscht.
	bei leerem Akku undefiniert ist. Ist eine MMC mit einem S7PROG.WLD gesteckt, werden Programmcode und Datenbausteine von der MMC in den Arbeitsspeicher der CPU übertragen.
	Ist keine MMC gesteckt, wird das Projekt aus dem internen Flash geladen.
	Abhängig von der Stellung des Betriebsartenschalters bleibt die CPU im STOP bzw. geht in RUN. Aufgrund des Batteriefehlers kann die CPU nur anlaufen, sofern ein OB81 projektiert wurde. Ansonsten ist ein manueller Neustart (STOP/RUN) bzw. PG-Kommando erforderlich.
	Bei einem Anlauf bei leerem Akku leuchtet die SF-LED und weist somit auf einen Eintrag im Diagnosepuffer hin. Nähere Informationen zu den Ereignis-IDs finden Sie unter "VIPA-spezifische Diagnose-Einträge".

Achtung!

Bei leerem Akku läuft die CPU nach einem Spannungsreset mit einem BAT-Fehler an und führt ein automatisches Urlöschen der CPU durch.

Adressierung

Automatische Adressierung	 Damit die gesteckten Peripheriemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden. Bei der CPU gibt es einen Peripheriebereich (Adresse 0 1023) und ein Prozessabbild der Ein- und Ausgänge (je Adresse 0 127). Beim Hochlauf der CPU vergibt diese automatisch von 0 an aufsteigend Peripherieadressen für digitale Ein-/Ausgabe-Module. Sofern keine Hardwareprojektierung vorliegt, werden Analog-Module bei der automatischen Adressierung auf gerade Adressen ab Adresse 128 abgelegt. 			
Signalzustände in Prozessabbild	 Die Signalzustände der unteren Adresse (0 127) werden zusätzlich in einem besonderen Speicherbereich, dem <i>Prozessabbild</i> gespeichert. Das Prozessabbild ist in zwei Teile gegliedert: Prozessabbild der Eingänge (PAE) Prozessabbild der Ausgänge (PAA) 			
	Parinhariaharaich	, I	Prozessabbild	
	0 Digitalmodule		Eingänge PAE	
	128 Analogmodule	0	Ausgänge PAA	
	 Prozessabbild der Peripheriebereich Digitalmodule 127 128 Analogmodule 1023 	r Ausgänge (PA	A) Prozessabbild Eingänge PAE Ausgänge PAA	

Nach jedem Zyklusdurchlauf wird das Prozessabbild automatisch aktualisiert.

Lese- undÜber Lese- bzw. Schreibzugriffe auf die Peripheriebytes oder auf dasSchreibzugriffeProzessabbild können Sie die Module ansprechen.

Hinweis!

Bitte beachten Sie, dass durch den lesenden und schreibenden Zugriff auf dieselbe Adresse <u>unterschiedliche</u> Module angesprochen werden können. Digitale und analoge Module haben bei der automatischen Adressierung getrennte Adressbereiche.

 Digitalmodule:
 0 ... 127

 Analogmodule:
 128 ... 1023

Beispiel zur automatischen Adresszuordnung

Die nachfolgende Abbildung soll die automatische Adresszuordnung nochmals verdeutlichen:

Adresszuordnung durch Projektierung ändern

Sie können jederzeit durch Einsatz des Siemens SIMATIC Managers die Adresszuordnung ändern. Somit können Sie auch Analogmodule in den Prozessabbildbereich (0 ... 127) legen und Digitalmodule oberhalb von 127. Die Vorbereitung für die Projektierung und die Vorgehensweise bei der Projektierung sind auf den Folgeseiten beschrieben.

Hinweise zum Einsatz der MPI-Schnittstelle

Was ist MP ² I?	 Die MP²I-Schnittstelle hat 2 Schnittstellen in einer Schnittstelle vereint: MPI-Schnittstelle RS232-Schnittstelle Bitte beachten Sie, dass die MP²I-Schnittstelle nur bei Einsatz des Green Cable von VIPA als RS232-Schnittstelle benutzt werden kann.
Einsatz als MPI- Schnittstelle	Die MPI-Schnittstelle dient zur Datenübertragung zwischen CPUs und PCs. In einer Buskommunikation können Sie Daten zwischen den CPUs trans- ferieren, die über MPI verbunden sind. Bei Anschluss eines handelsüblichen MPI-Kabels bietet die MPI-Buchse die volle MPI-Funktionalität.

Wichtige Hinweise zum Einsatz von MPI-Kabeln

Bei Einsatz eines MPI-Kabels an den CPUs von VIPA ist darauf zu achten, dass der Pin 1 nicht verbunden ist. Dies kann zu Transferproblemen führen und ggf. an der CPU einen Defekt herbeiführen!

Insbesondere PROFIBUS-Kabel von Siemens wie beispielsweise das Kabel mit der Best.-Nr. 6XV1 830-1CH30 darf an der MP²I-Buchse nicht betrieben werden.

Für Schäden, die aufgrund der Nichtbeachtung dieser Hinweise und bei unsachgemäßem Einsatz entstehen, übernimmt die VIPA keinerlei Haftung!

Einsatz als RS232-Schnittstelle nur über "Green Cable" Zur seriellen Übertragung von Ihrem PC aus ist ein MPI-Umsetzer erforderlich. Sie können aber auch das "Green Cable" von VIPA verwenden. Sie erhalten es unter der Best.-Nr. VIPA 950-0KB00.

Hiermit können Sie Ihre Daten, ausschließlich bei VIPA CPUs mit MP²I-Buchse, als Punkt-zu-Punkt-Verbindung seriell über die MP²I-Buchse übertragen.

Hardware-Konfiguration - CPU

Übersicht Zur Projektierung der CPU 21x und der am VIPA-Bus neben der CPU befindlichen System 200V Module verwenden Sie den Hardware-Konfigurator von Siemens.

Damit die direkt gesteckten Peripheriemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden.

Die Adresszuordnung und die Parametrierung der Module erfolgt im Siemens SIMATIC Manager in Form eines virtuellen PROFIBUS-Systems. Da die PROFIBUS-Schnittstelle auch softwareseitig standardisiert ist, können wir auf diesem Weg gewährleisten, dass über die Einbindung einer GSD-Datei die Funktionalität in Verbindung mit dem Siemens SIMATIC Manager jederzeit gegeben ist.

Ihr Projekt wird über die MPI-Schnittstelle in Ihre CPU übertragen

Voraussetzung Folgende Voraussetzungen müssen für die Projektierung erfüllt sein

- Siemens SIMATIC Manager auf PC bzw. PG installiert
- GSD-Dateien in Hardware-Konfigurator von Siemens eingebunden
- Serielle Verbindung zur CPU (z.B. MPI-Adapter)

Hinweis!

Für die Projektierung der CPU werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator von Siemens vorausgesetzt!

GSD-Datei einbinden

- Gehen Sie auf www.vipa.com > Service > Download > PROFIBUS GSD-Dateien und laden Sie die Datei System_100V_-_200V_Vxxx.zip.
- Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis. Die vipa_21x.gsd (deutsch) bzw. vipa_21x.gse (englisch) befinden sich im Verzeichnis *CPU21x*.
- Starten Sie den Hardware-Konfigurator von Siemens und schließen Sie alle Projekte.
- Gehen Sie auf **Extras** > Neue GSD-Datei installieren.
- Navigieren Sie in das Verzeichnis *CPU21x* und geben Sie die entsprechende Datei **vipa_21x.gsd** (deutsch) oder **vipa_21x.gse** (englisch) an.

Die Module des System 200V von VIPA befinden sich im Hardwarekatalog unter *PROFIBUS-DP* \ *Weitere Feldgeräte* \ *I/O* \ *VIPA_System_200V*.

Vorgehensweise Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- Platzieren Sie auf Steckplatz 2 folgende Siemens CPU: CPU 315-2DP (315-2AF03 0AB00 V1.2)
- Legen Sie für das System 200V ein neues PROFIBUS-Subnetz an.
- Binden Sie an das Subnetz das Slave-System "VIPA_CPU21x" mit der PROFIBUS-Adresse 1 an. Nach Einbindung der vipa_21x.gsd finden Sie das Slave-System im Hardware-Katalog unter PROFIBUS DP > Weitere Feldgeräte > IO > VIPA_System_200V.
- Platzieren Sie **immer auf dem 1. Steckplatz** die entsprechende CPU 21x-2BS03, indem Sie diese dem Hardware-Katalog entnehmen.

Hardware-Konfiguration - I/O-Module

Hardware-Konfiguration der Module Binden Sie in Ihrem Slave-System nach der CPU Ihre System 200V Module in der gesteckten Reihenfolge ein.

Damit die gesteckten Peripheriemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden.

- **Parametrierung** Zur Parametrierung doppelklicken Sie in Ihrer Steckplatzübersicht auf das zu parametrierende Modul. Daraufhin öffnet sich ein Dialogfenster. Hier können Sie Ihre Parametereinstellungen vornehmen.
- Parametrierung zur
LaufzeitUnter Einsatz der SFCs 55, 56 und 57 können Sie zur Laufzeit Parameter
ändern und an die entsprechenden Module übertragen.
Hierbei sind die modulspezifischen Parameter in sogenannten
"Datensätzen" abzulegen.
Näheres zum Aufbau der Datensätze finden Sie in der Beschreibung zu
den Modulen.

Einstellung CPU-Parameter

Parametrierung über Siemens CPU 315-2AF03 Da die CPU von VIPA im Hardware-Konfigurator als Siemens CPU 315-2DP (315-2AF03 0AB00 V1.2) zu projektieren ist, können Sie bei der Hardware-Konfiguration unter den "Eigenschaften" der CPU 315-2DP die Parameter für die VIPA-CPU einstellen.

Durch Doppelklick auf die CPU 315-2DP gelangen Sie in das Parametrierfenster für die CPU.

Über die Register haben Sie Zugriff auf alle Standard Parameter Ihrer CPU.

Parameter, die unterstützt werden	Die CPU wertet nicht alle Parameter aus, welche Sie bei der Hardware- Konfiguration einstellen können. Folgende Parameter werden zur Zeit in der CPU ausgewertet:
Allgemein	
Kurzbezeichnung	Die Kurzbezeichnung der Siemens CPU 315-2AF03 ist CPU 315-2DP.
Bestell-Nr./ Firmware	Bestellnummer und Firmware sind identisch zu den Angaben im Fenster "Hardware Katalog".
Name	Als Name steht hier die Kurzbezeichnung der CPU. Wenn Sie den Namen ändern, erscheint dieser im Siemens SIMATIC Manager.
Kommentar	Hier können Sie den Einsatzzweck der Baugruppe eingeben.
Anlauf	
Anlauf bei Sollausbau ungleich Istausbau	Wenn "Anlauf bei Sollausbau ungleich Istausbau" <i>deaktiviert</i> ist und mindestens eine Baugruppe nicht auf dem projektierten Steckplatz steckt, oder dort eine Baugruppe von einem anderen Typ steckt, geht die CPU nicht in RUN und verbleibt in STOP.
	Wenn "Anlauf bei Sollausbau ungleich Istausbau" <i>aktiviert</i> ist, läuft die CPU an, auch wenn Baugruppen nicht auf den projektierten Steckplätzen stecken oder dort Baugruppen eines anderen Typs stecken (z.B. bei Inbetriebnahme).
	1 0D000 D 15/40 0.0

Überwachungszeit für Fertigmeldung durch Baugruppen [100ms]	Maximale Dauer für die Fertigmeldung aller konfigurierten Baugruppen nach NetzEIN. Hierbei werden auch angebundene PROFIBUS-DP-Slaves berücksichtigt, bis diese parametriert sind. Wenn nach Ablauf dieser Zeit die Baugruppen keine Fertigmeldung an die CPU senden, ist der Istausbau ungleich dem Sollausbau.
Überwachungszeit für Übertragung der Parameter an Baugruppen [100ms]	Maximale Dauer für die Übertragung der Parameter an die parametrierbaren Baugruppen. Wenn nach Ablauf dieser Zeit nicht alle Baugruppen parametriert sind, ist der Istausbau ungleich dem Sollausbau.
Zyklus / Taktmerker	
OB1-Prozessabbild zyklisch aktualisieren	Dieser Parameter ist nicht relevant.
Zyklus- überwachungszeit	 Hier geben Sie die Zyklusüberwachungszeit in ms ein. Wenn die Zykluszeit die Zyklusüberwachungszeit überschreitet, geht die CPU in STOP. Ursachen für eine Überschreitung: Kommunikationsprozesse Häufung von Alarmereignissen Fehler im CPU-Programm
Mindestzykluszeit	Dieser Parameter ist nicht relevant.
Zyklusbelastung durch Kommuni- kation	Mit diesem Parameter können Sie die Dauer von Kommunikations- prozessen, welche immer auch die Zykluszeit verlängern, in bestimmten Grenzen steuern. Bei Einstellung der Zyklusbelastung durch Kommunikation auf 50% kann sich eine Verdopplung der OB 1-Zykluszeit ergeben. Außerdem wird der OB 1-Zyklus zusätzlich durch asynchrone Ereignisse (z.B. Prozessalarme) verlängert.
OB85-Aufruf bei Peripheriezugriffs- fehler	Sie können die voreingestellte Reaktion der CPU bei Peripherie- zugriffsfehlern währen der systemseitigen Aktualisierung des Prozess- abbildes ändern. Die VIPA-CPU ist so voreingestellt, dass sie bei Peripheriezugriffsfehlern keinen OB 85 aufruft und auch keinen Eintrag im Diagnosepuffer erzeugt.
Taktmerker	Aktivieren Sie dieses Kästchen, wenn Sie einen Taktmerker einsetzen und geben Sie die Nummer des Merkerbytes ein.
	Hinweis!

Das gewählte Merkerbyte kann nicht für die Zwischenspeicherung von Daten genutzt werden.

Remanenz

Anzahl Merkerbytes ab MB0	Die Anzahl der remanenten Merkerbytes ab Merkerbyte 0 können Sie hier angeben.
Anzahl S7-Timer ab T0	Hier tragen Sie die Anzahl der remanenten <i>S7-Timer</i> ab T0 ein. Jeder <i>S7-Timer</i> belegt 2Byte.
Anzahl S7-Zähler ab Z0	Tragen Sie die Anzahl der remanenten S7-Zähler ab Z0 hier ein.
Bereiche	Diese Parameter sind nicht relevant.
Alarme	
Priorität	Hier werden die Prioritäten angezeigt, nach denen der entsprechende Alarm-OB (Prozessalarm, Verzögerungsalarm, Asynchronfehleralarm) bearbeitet wird.
Uhrzeitalarme	
Priorität	Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende Uhrzeitalarm-OB bearbeitet werden soll. Mit Priorität "0" wählen Sie den entsprechenden OB ab.
Aktiv	Bei aktiviertem Kästchen, wird der Uhrzeitalarm-OB bei einem Neustart automatisch gestartet.
Ausführung	Hier wählen Sie aus, wie oft die Alarme ausgeführt werden sollen. Die Intervalle von minütlich bis jährlich beziehen sich auf die Einstellungen unter <i>Startdatum</i> und <i>Uhrzeit</i> .
Startdatum/Uhrzeit	Hier geben Sie an, wann der Uhrzeitalarm zum ersten Mal ausgeführt werden soll.
Teilprozessabbild	Dieser Parameter wird nicht unterstützt.
Weckalarme	

Priorität Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende Weckalarm-OB bearbeitet werden soll. Mit Priorität "0" wählen Sie den entsprechenden OB ab.

Ausführung	Geben Sie	e die Zei	tabstände	in ms	an, in	denen	die Weckala	rm-OBs
	bearbeitet	werden.	Startzeitp	ounkt is	st der	Betriebs	zustandwechs	sel von
	STOP nach	n RUN.						

Phasenverschiebung Geben Sie hier eine Zeit in ms an, um welche der tatsächliche Ausführungszeitpunkt des Weckalarms verzögert werden soll. Dies ist sinnvoll, wenn mehrere Weckalarme aktiv sind. Mit der *Phasenverschiebung* können diese über den Zyklus hinweg verteilt werden.

Teilprozessabbild Dieser Parameter wird nicht unterstützt.

Schutz

Schutzstufe Hier können Sie eine von 3 Schutzstufen einstellen, um die CPU vor unbefugtem Zugriff zu schützen. Schutzstufe 1 (voreingestellt):

• kein Passwort parametrierbar; keine Einschränkungen Schutzstufe 2 mit Passwort:

- Kenntnis des Passworts: lesender und schreibender Zugriff
- Unkenntnis des Passworts: nur lesender Zugriff *Schutzstufe 3:*
- Kenntnis des Passworts: lesender und schreibender Zugriff
- Unkenntnis des Passworts: weder lesender noch schreibender Zugriff

Projekt transferieren

...

Übersicht	Sie haben folgende Möglichkeiten für den Projekt-Transfer in die CPU:
	Transfer über MPI
	 Transfer über MMC bei Einsatz eines MMC-Lesers

Transfer über MPI Der Aufbau eines MPI-Netzes gleicht elektrisch dem Aufbau eines PROFIBUS-Netzes. Das heißt, es gelten dieselben Regeln und Sie verwenden für beide Netze die gleichen Komponenten zum Aufbau. Die einzelnen Teilnehmer werden über Busanschlussstecker und PROFIBUS-Kabel verbunden. Defaultmäßig wird das MPI-Netz mit 187,5kBaud betrieben. VIPA-CPUs werden mit der MPI-Adresse 2 ausgeliefert.

MPI-Programmierkabel Die MPI-Programmierkabel erhalten Sie in verschiedenen Varianten von VIPA. Die Kabel bieten einen RS232- bzw. USB-Anschluss für den PC und einen busfähigen RS485-Anschluss für die CPU.

Aufgrund des RS485-Anschlusses dürfen Sie die MPI-Programmierkabel direkt auf einen an der RS485-Buchse schon gesteckten Stecker aufstecken. Jeder Busteilnehmer identifiziert sich mit einer eindeutigen Adresse am Bus, wobei die Adresse 0 für Programmiergeräte reserviert ist.

Abschluss-
widerstandEine Leitung muss mit ihrem Wellenwiderstand abgeschlossen werden.
Hierzu schalten Sie den Abschlusswiderstand am ersten und am letzten
Teilnehmer eines Netzes oder eines Segments zu.

Achten Sie darauf, dass die Teilnehmer, an denen der Abschlusswiderstand zugeschaltet ist, immer mit Spannung versorgt sind. Ansonsten kann es zu Störungen auf dem Bus kommen.

Transfer mit MPI-Programmierkabel (MPI-Kommunikation)

Transfer mit Green Cable (Serielle Kommunikation)

Durch <u>ausschließlich direktes</u> Stecken des Green Cable auf einer MP²I-Buchse können Sie eine serielle Verbindung zwischen PC und CPU herstellen. Geben Sie unter *Lokaler Anschluss* den PC-COM-Port und die Übertragungsrate 38400Baud ein. Die Einstellungen im Register *MPI* werden bei Green Cable Einsatz ignoriert.

MPI konfigurieren Hinweise zur Konfiguration einer MPI-Schnittstelle finden Sie in der Dokumentation zu Ihrer Programmiersoftware.

Das "Green Cable" hat die Best.-Nr. VIPA 950-0KB00.

Achtung!

Das "Green Cable" dürfen Sie ausschließlich bei VIPA CPUs mit MP²I-Schnittstellen einsetzen.

Bitte beachten Sie hierzu die Hinweise zum Einsatz der MPI-Buchse und des Green Cable!

Vorgehensweise Transfer über **MPI-Schnittstelle**

- Verbinden Sie Ihren PC über ein MPI-Programmierkabel mit der MPI-Buchse Ihrer CPU.
- Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
- Wählen Sie im Menü Extras > PG/PC-Schnittstelle einstellen
- Wählen Sie in der Auswahlliste "PC Adapter (MPI)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- Stellen Sie im Register MPI die Übertragungsparameter Ihres MPI-Netzes ein und geben Sie eine gültige Adresse an.
- Wechseln Sie in das Register Lokaler Anschluss
- Geben Sie den COM-Port des PCs an und stellen Sie für Ihr MPI-Programmierkabel die Übertragungsrate 38400Baud ein.
- Mit Zielsystem > Laden in Baugruppe können Sie Ihr Projekt über MPI in die CPU übertragen und mit **Zielsystem** > RAM nach ROM kopieren auf einer MMC sichern, falls diese gesteckt ist.

Hinweis!

Bitte beachten Sie, dass Sie bei Einsatz des Green Cable die Übertragungsgeschwindigkeit auf 38400 Baud einstellen.

Hinweise zum Green Cable Das Green Cable ist ein grünes Verbindungskabel, das ausschließlich zum Einsatz an VIPA System-Komponenten konfektioniert ist.

Das Green Cable ist ein Programmier- und Downloadkabel für VIPA CPUs mit MP²I-Buchse sowie VIPA Feldbus-Master. Sie erhalten das Green Cable von VIPA unter der Best.-Nr.: VIPA 950-0KB00.

Mit dem Green Cable können Sie:

• Projekte seriell übertragen

Unter Umgehung aufwändiger Hardware (MPI-Adapter, etc.) können Sie über das Green Cable eine serielle Punkt-zu-Punkt-Verbindung über die MP²I-Schnittstelle realisieren.

• *Firmware-Updates der CPUs und Feldbus-Master durchführen* Über das Green Cable können Sie unter Einsatz eines Upload-Programms die Firmware aller aktuellen VIPA CPUs mit MP²I-Buchse sowie bestimmte Feldbus-Master (s. Hinweis) aktualisieren.

Wichtige Hinweise zum Einsatz des Green Cable

Bei Nichtbeachtung der nachfolgenden Hinweise können Schäden an den System-Komponenten entstehen.

Für Schäden, die aufgrund der Nichtbeachtung dieser Hinweise und bei unsachgemäßem Einsatz entstehen, übernimmt die VIPA keinerlei Haftung!

Hinweis zum Einsatzbereich

Das Green Cable darf ausschließlich <u>direkt</u> an den hierfür vorgesehenen Buchsen der VIPA-Komponenten betrieben werden (Zwischenstecker sind nicht zulässig). Beispielsweise ist vor dem Stecken des Green Cable ein gestecktes MPI-Kabel zu entfernen.

Zurzeit unterstützen folgende Komponenten das Green Cable: VIPA CPUs mit MP²I-Buchse sowie die Feldbus-Master von VIPA.

Hinweis zur Verlängerung

Die Verlängerung des Green Cable mit einem weiteren Green Cable bzw. die Kombination mit weiteren MPI-Kabeln ist nicht zulässig und führt zur Beschädigung der angeschlossenen Komponenten!

Das Green Cable darf nur mit einem 1:1 Kabel (alle 9 Pin 1:1 verbunden) verlängert werden.

Transfer über MMC	 Die MMC (Memory Card) dient als externes Speichermedium. Es dürfen sich mehrere Projekte und Unterverzeichnisse auf einer MMC befinden. Bitte beachten Sie, dass sich Ihre aktuelle Projektierung im Root-Verzeichnis befindet und einen der folgenden Dateinamen hat: S7PROG.WLD
	AUTOLOAD.WLD Mit Datai > Mamony Cord Datai > Novy können Sie im Siemene SIMATIC
	Manager eine WLD-Datei erzeugen. Danach kopieren Sie aus dem Baustein-Ordner Ihres Projekts alle Bausteine und die <i>Systemdaten</i> in die WLD-Datei.
Transfer MMC \rightarrow CPU	Das Übertragen des Anwenderprogramms von der MMC in die CPU erfolgt je nach Dateiname nach Urlöschen oder nach PowerON.
	• <i>S7PROG.WLD</i> wird nach Urlöschen von der MMC gelesen und in das batteriegepufferte RAM übertragen
	• <i>S7PROGF.WLD</i> wird nach Urlöschen von der MMC gelesen, in das batteriegepufferte RAM und zusätzlich in den Flash-Speicher übertragen. Ein Zugriff auf den Flash-Speicher erfolgt nur bei leerer Pufferbatterie, sofern keine MMC mit Anwenderprogramm gesteckt ist.
	• <i>AUTOLOAD.WLD</i> wird nach NetzEIN von der MMC gelesen und in das batteriegepufferte RAM übertragen .
	Das Blinken der LED "MC" der CPU kennzeichnet den Übertragungs- vorgang. Bitte beachten Sie, dass Ihr Anwenderspeicher ausreichend Speicherplatz für Ihr Anwenderprogramm bietet, ansonsten wird Ihr Anwenderprogramm unvollständig geladen und die SF-LED leuchtet. Führen Sie vor der Übertragung eine Komprimierung durch, da keine automatische Komprimierung durchgeführt wird.
Transfer CPU \rightarrow MMC	Bei einer in der CPU gesteckten MMC wird durch einen Schreibbefehl der Inhalt des batteriegepufferten RAMs als <i>S7PROG.WLD</i> auf die MMC und in den internen Flash-Speicher übertragen.
	Den Schreibbefehl starten Sie aus dem Siemens SIMATIC Manager auf Bausteinebene über Zielsystem > <i>RAM nach ROM kopieren</i> . Während des Schreibvorgangs blinkt die "MC"-LED. Erlischt die LED, ist der Schreib- vorgang beendet.
	Soll dieses Projekt automatisch nach einem NetzEIN von der MMC geladen werden, so müssen Sie dieses auf der MMC in <i>AUTOLOAD.WLD</i> umbenennen.
Kontrolle des Transfervorgangs	Nach einem MMC-Zugriff erfolgt ein Diagnose-Eintrag der CPU. Zur Anzeige der Diagnoseeinträge gehen Sie im Siemens SIMATIC Manager auf Zielsystem > <i>Baugruppenzustand</i> . Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster.
	Nähere Informationen zu den Ereignis-IDs finden Sie unter "VIPA- spezifische Diagnose-Einträge".

Betriebszustände

Übersicht	 Die CPU kennt 3 Betriebszustände: Betriebszustand STOP Betriebszustand ANLAUF Betriebszustand RUN In den Betriebszuständen ANLAUF und RUN können bestimmte Ereignisse auftreten, auf die das Systemprogramm reagieren muss. In vielen Fällen wird dabei ein für das Ereignis vorgesehener Organisationsbaustein als Anwenderschnittstelle aufgerufen.			
Betriebszustand STOP	 Das Anwenderprogramm wird nicht bearbeitet. Hat zuvor eine Programmbearbeitung stattgefunden, bleiben die Werte von Zählern, Zeiten, Merkern und des Prozessabbilds beim Übergang in den STOP-Zustand erhalten. Die Befehlsausgabe ist gesperrt, d.h. alle digitalen Ausgaben sind gesperrt. RUN-LED (R) aus STOP-LED (S) an 			
Betriebszustand ANLAUF	 Während des Übergangs von STOP nach RUN erfolgt ein Sprung in den Anlauf-Organisationsbaustein OB 100. Der Ablauf des OBs wird zeitlich nicht überwacht. Im Anlauf-OB können weitere Bausteine aufgerufen werden. Beim Anlauf sind alle digitalen Ausgaben gesperrt, d.h. die Befehlsaus- gabesperre ist aktiv. RUN-LED blinkt, solange der OB 100 bearbeitet wird und für mindestens 3s, auch wenn der Anlauf kürzer ist oder die CPU aufgrund eines Fehler in STOP geht. Dies zeigt den Anlauf an. STOP-LED aus Wenn die CPU einen Anlauf fertig bearbeitet hat, geht Sie in den Betriebs- zustand RUN über. 			
Betriebszustand RUN	 Das Anwenderprogramm im OB 1 wird zyklisch bearbeitet, wobei zusätzlich alarmgesteuert weitere Programmteile eingeschachtelt werden können. Alle im Programm gestarteten Zeiten und Zähler laufen und das Prozessabbild wird zyklisch aktualisiert. Das BASP-Signal (Befehlsausgabesperre) wird deaktiviert, d.h. alle digitalen Ausgänge sind freigegeben. RUN-LED an STOP-LED aus 			

Funktions-
sicherheitDie CPUs besitzen Sicherheitsmechanismen, wie einen Watchdog (100ms)
und eine parametrierbare Zykluszeitüberwachung (parametrierbar min.
1ms), die im Fehlerfall die CPU stoppen bzw. einen RESET auf der CPU
durchführen und diese in einen definierten STOP-Zustand versetzen.
Die CPUs von VIPA sind funktionssicher ausgelegt und besitzen folgende
Systemeigenschaften:

Ereignis	betrifft	Effekt		
$RUN \to STOP$	allgemein	BASP (Befehls-Ausgabe-Sperre) wird gesetzt.		
	zentrale digitale Ausgänge	Die Ausgänge werden abgeschaltet.		
	zentrale analoge Ausgänge	Die Ausgänge werden abgeschaltet.		
		- Spannungsausgänge geben 0V aus		
		- Stromausgänge 020mA geben 0mA aus		
		- Stromausgänge 420mA geben 4mA aus		
		Falls parametriert können auch Ersatzwerte ausgegeben werden.		
	dezentrale Ausgänge	Verhalten wie bei zentralen digitalen/analogen Ausgängen		
	dezentrale Eingänge	Die Eingänge werden von der dezentralen Station zyklisch gelesen und die aktuellen Werte zur Verfügung gestellt.		
STOP → RUN bzw. NetzEin	allgemein	Zuerst wird das PAE gelöscht, danach erfolgt der Aufruf des OB 100. Nachdem dieser abgearbeitet ist, wird das BASP zurückgesetzt und der Zyklus gestartet mit: PAA löschen \rightarrow PAE lesen \rightarrow OB 1.		
	zentrale analoge Ausgänge	Das Verhalten der Ausgänge bei Neustart kann voreingestellt werden.		
	dezentrale Eingänge	Die Eingänge werden von der dezentralen Station zyklisch gelesen und die aktuellen Werte zur Verfügung gestellt.		
RUN	allgemein	Der Programmablauf ist zyklisch und damit vorhersehbar: PAE lesen \rightarrow OB 1 \rightarrow PAA schreiben.		

PAE = Prozessabbild der Eingänge

PAA = Prozessabbild der Ausgänge

Urlöschen

Übersicht

Beim Urlöschen wird der komplette Anwenderspeicher gelöscht. Ihre Daten auf der Memory Card bleiben erhalten.

Sie haben 2 Möglichkeiten zum Urlöschen:

- Urlöschen über Betriebsartenschalter
- Urlöschen über Konfigurations-Software wie z.B. Siemens SIMATIC Manager

Hinweis!

Vor dem Laden Ihres Anwenderprogramms in Ihre CPU sollten Sie die CPU immer urlöschen, um sicherzustellen, dass sich kein alter Baustein mehr in Ihrer CPU befindet.

Urlöschen über Betriebsartenschalter

Voraussetzung

Ihre CPU muss sich im STOP-Zustand befinden. Stellen Sie hierzu den CPU-Betriebsartenschalter auf "ST" \rightarrow die S-LED leuchtet.

Urlöschen

- Bringen Sie den Betriebsartenschalter in Stellung MR und halten Sie Ihn ca. 3 Sekunden. → Die S-LED geht von Blinken über in Dauerlicht.
- Bringen Sie den Betriebsartenschalter in Stellung ST und innerhalb von 3 Sekunden kurz in MR dann wieder auf ST.
 → Die S-LED blinkt (Urlösch-Vorgang).
- Das Urlöschen ist abgeschlossen, wenn die S-LED in Dauerlicht übergeht → Die S-LED leuchtet.

Die nachfolgende Abbildung zeigt nochmals die Vorgehensweise:

Automatisch nachladen	Falls auf der MMC ein Projekt S7PROG.WLD vorhanden ist, versucht die CPU dieses von der MMC neu zu laden. \rightarrow Die MC-LED leuchtet. Nach dem Nachladen erlischt die LED. Abhängig von der Einstellung des Betriebsartenschalters bleibt die CPU in STOP bzw. geht in RUN.		
Urlöschen über Siemens SIMATIC Manager	<i>Voraussetzung</i> Ihre CPU muss sich im STOP-Zustand befinden. Mit dem Menübefehl Zielsystem > <i>Betriebszustand</i> bringen Sie Ihre CPU in STOP.		
	Urlöschen		
	Über den Menübefehl Zielsystem > <i>Urlöschen</i> fordern Sie das Urlöschen an.		
	In dem Dialogfenster können Sie, wenn noch nicht geschehen, Ihre CPU in STOP bringen und das Urlöschen starten.		
	Während des Urlöschvorgangs blinkt die S-LED.		
	Geht die S-LED in Dauerlicht über, ist der Urlöschvorgang abgeschlossen.		
Automatisch nachladen	Falls auf der MMC ein Projekt S7PROG.WLD vorhanden ist, versucht die CPU dieses von der MMC neu zu laden. \rightarrow Die MC-LED leuchtet. Nach dem Nachladen erlischt die LED. Abhängig von der Einstellung des Betriebsartenschalters bleibt die CPU in STOP bzw. geht in RUN.		
Rücksetzen auf Werkseinstellung	Das <i>Rücksetzten auf Werkseinstellung</i> löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand. Bitte beachten Sie, dass hierbei auch die MPI-Adresse defaultmäßig auf 2 zurückgestellt wird! Nähere Informationen hierzu finden Sie unter "Rücksetzen auf Werkseinstellung" weiter unten.		

Firmwareupdate

Übersicht	Sie haben die Möglichkeit unter Einsatz einer MMC für die CPU und ihre Komponenten ein Firmwareupdate durchzuführen. Hierzu muss sich in der CPU beim Hochlauf eine entsprechend vorbereitete MMC befinden. Damit eine Firmwaredatei beim Hochlauf erkannt und zugeordnet werden kann, ist für jede updatefähige Komponente ein Dateiname reserviert (siehe Tabelle unten). Nach NetzEIN und CPU-STOP prüft die CPU, ob eine Firmware-Datei auf der MMC vorhanden ist. Wenn sich diese Firmware-Version von der zu überschreibenden Firmware-Version unterscheidet, zeigt die CPU dies über LED-Blinken an und sie können die Firmware über eine Updatean- forderung installieren.
Aktuelle Firmware auf www.vipa.com	Die aktuellsten Firmwarestände finden Sie auf www.vipa.com im Service- Bereich.
CPU Firmware- Version ermitteln	Den ausgelieferten Firmwarestand können Sie einem Aufkleber ent- nehmen, der sich auf der Rückseite der entsprechenden Komponente befindet. Sie haben auch die Möglichkeit im Siemens SIMATIC Manager den aktuellen Firmwarestand Ihrer CPU auszulesen. Gehen Sie hierzu über Ihr PG bzw. Ihren PC mit der CPU online und starten den Siemens SIMATIC Manager. Über Zielsystem > <i>Baugruppenzustand</i> , Register "Allgemein" wird der aktuelle CPU-Firmwarestand ermittelt und angezeigt.

Achtung!

Beim Aufspielen einer neuen Firmware ist äußerste Vorsicht geboten. Unter Umständen kann Ihre CPU unbrauchbar werden, wenn beispielsweise während der Übertragung die Spannungsversorgung unterbrochen wird oder die Firmware-Datei fehlerhaft ist.

Setzten Sie sich in diesem Fall mit der VIPA-Hotline in Verbindung!

Bitte beachten Sie, dass sich die zu überschreibende Firmware-Version von der Update-Version unterscheidet, ansonsten erfolgt kein Update.

Firmware von MMC in CPU übertragen

- Bringen Sie den Betriebsartenschalter Ihrer CPU in Stellung ST.
 Schalten Sie die Spannungsversorgung aus. Stecken Sie die MMC mit den Firmware-Dateien in die CPU. Achten Sie hierbei auf die Steckrichtung der MMC. Schalten Sie die Spannungsversorgung ein.
 - Nach einer kurzen Hochlaufzeit zeigt das abwechselnde Blinken der LEDs SF und FC an, dass auf der MMC mindestens eine abweichende Firmware-Datei gefunden wurde.
 - 3. Sie starten die Übertragung der Firmware, sobald Sie innerhalb von 10s den Betriebsartenschalter kurz nach MR tippen und dann den Schalter in der ST-Position belassen.
 - 4. Während des Update-Vorgangs blinken die LEDs SF und FC abwechselnd und die MC-LED leuchtet. Dieser Vorgang kann mehrere Minuten dauern.
 - 5. Das Update ist fehlerfrei beendet, wenn die LEDs PW, S, SF, FC und MC leuchten. Blinken diese schnell, ist ein Fehler aufgetreten.
 - 6. Schalten Sie die Spannungsversorgung aus und wieder ein. Jetzt prüft die CPU, ob noch weitere Firmware-Updates durchzuführen sind. Ist dies der Fall, blinken, wiederum nach einer kurzen Hochlaufzeit, die LEDs SF und FC. Fahren Sie mit Punkt 3 fort.

Blinken die LEDs nicht, ist das Firmware-Update abgeschlossen.

Führen Sie jetzt wie nachfolgend beschrieben ein *Rücksetzen auf Werkseinstellungen* durch. Danach ist die CPU wieder einsatzbereit.

Rücksetzen auf Werkseinstellung

Vorgehensweise Die folgende Vorgehensweise löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand.

Bitte beachten Sie, dass hierbei auch die MPI-Adresse auf 2 zurückgestellt wird!

- 1. Bringen Sie die CPU in STOP.
- Drücken Sie den Betriebsartenschalter für ca. 30 Sekunden nach unten in Stellung MR. Hierbei blinkt die S-LED. Nach ein paar Sekunden leuchtet die S-LED. Die STOP-LED wechselt jetzt von Leuchten in Blinken. Zählen Sie, wie oft die S-LED leuchtet.
- Nach dem 6. Mal Leuchten der STOP-LED lassen Sie den Reset-Schalter wieder los, um ihn nochmals kurzzeitig nach unten zu drücken. Jetzt leuchtet die grüne RUN-LED einmal auf. Das bedeutet, dass das RAM vollständig gelöscht ist.
- 4. Zur Bestätigung des Rücksetzvorgangs leuchten die LEDs PW und S.
- 5. Danach ist die Spannungsversorgung aus- und wieder einzuschalten.

Die nachfolgende Abbildung soll die Vorgehensweise verdeutlichen:

Hinweis!

Bitte führen Sie nach einem Firmwareupdate der CPU immer ein Rücksetzen auf Werkseinstellung durch.

VIPA-spezifische Diagnose-Einträge

Einträge im Diagnosepuffer Diagnosepuffer Diagnosepuffer der CPU auszulesen. Neben den Standardeinträgen im Diagnosepuffer gibt es in den CPUs der VIPA noch zusätzliche Einträge, die ausschließlich in Form einer Ereignis-ID angezeigt werden.

Anzeige der Zur Anzeige der Diagnoseeinträge gehen Sie in Ihrem Siemens SIMATIC Diagnoseeinträge Manager auf Zielsystem > Baugruppenzustand. Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster:

	Baugru	ppenzustand								
Pfa	ad: Erreio	chbare Teilnehn	ner MPI = 2				Betrie	ebszustan	d CPU: RUN	
		Diagnosepuffe	er							
	Nr. 8 9 10 11 12 13	Uhrzeit 13:18:11:370 	Datum 19.12.2011 	Ereig Ereig 	nis Inis-ID: 16	6# E0CC	•		/IPA-I	
D	vetails:]			

Für die Diagnose ist der Betriebszustand der CPU irrelevant. Es können maximal 100 Diagnoseeinträge in der CPU gespeichert werden.

Auf der Folgeseite finden Sie eine Übersicht der VIPA-spezifischen Ereignis-IDs.

Übersicht der Ereignis-ID

Ereignis-ID	Bedeutung
0xE003	Fehler beim Zugriff auf Peripherie
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE004	Mehrfach-Parametrierung einer Peripherieadresse
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE005	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE006	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE007	Konfigurierte Ein-/Ausgangsbytes passen nicht in Peripheriebereich
0xE008	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE009	Fehler beim Zugriff auf Standard-Rückwandbus
0xE010	Nicht definierte Baugruppe am Rückwandbus erkannt
	Zinfo2: Steckplatz
	Zinfo3: Typkennung
0xE011	Masterprojektierung auf Slave-CPU nicht möglich oder fehlerhafte Slavekonfiguration
0xF012	Fehler bei Parametrierung
0xE013	Fehler bei Schieberegisterzugriff auf VBUS Digitalmodule
0xE014	Fehler bei Check Svs
0xE015	Fehler beim Zugriff auf Master
0//2010	Zinfo2: Steckplatz des Masters (32=Kachelmaster)
0xE016	Maximale Blockgröße bei Mastertransfer überschritten
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE017	Fehler beim Zugriff auf integrierten Slave
0xE018	Fehler beim Mappen der Masterperipherie
0xE019	Fehler bei Erkennung des Standard Rückwandbus Systems
0xE01A	Fehler bei Erkennung der Betriebsart (8 / 9 Bit)
0xE0CC	Kommunikationsfehler MPI / Seriell
0xE100	MMC-Zugriffsfehler
0xE101	MMC-Fehler Filesystem
0xE102	MMC-Fehler FAT
0xE104	MMC Fehler beim Speichern
0xE200	MMC Schreiben beendet (Copy Ram2Rom)
0xE210	MMC Lesen beendet (Nachladen nach Urlöschen)
0xE300	Internes Flash Schreiben beendet (Copy RAM to ROM)
0xE310	Internes Flash Lesen beendet (Nachladen nach Batterieausfall)
	· · · · · · · · · · · · · · · · · · ·

Mit Testfunktionen Variablen steuern und beobachten

ÜbersichtZur Fehlersuche und zur Ausgabe von Variablenzuständen können Sie in
Ihrem Siemens SIMATIC Manager unter dem Menüpunkt Test
verschiedene Testfunktionen aufrufen.
Mit der Testfunktion Test > Beobachten können die Signalzustände von
Operanden und das VKE angezeigt werden.
Mit der Testfunktion Zielsystem > Variablen beobachten/steuern können
die Signalzustände von Variablen geändert und angezeigt werden.

Test > BeobachtenDiese Testfunktion zeigt die aktuellen Signalzustände und das VKE der
einzelnen Operanden während der Programmbearbeitung an.
Es können außerdem Korrekturen am Programm durchgeführt werden.

Hinweis!

Die CPU muss bei der Testfunktion "Beobachten" in der Betriebsart RUN sein!

Die Statusbearbeitung kann durch Sprungbefehle oder Zeit- und Prozessalarme unterbrochen werden. Die CPU hört an der Unterbrechungsstelle auf, Daten für die Statusanzeige zu sammeln und übergibt dem PG anstelle der noch benötigten Daten nur Daten mit dem Wert 0.

Deshalb kann es bei Verwendung von Sprungbefehlen oder von Zeit- und Prozessalarmen vorkommen, dass in der Statusanzeige eines Bausteins während dieser Programmbearbeitung nur der Wert 0 angezeigt wird für:

- das Verknüpfungsergebnis VKE
- Status / AKKU 1
- AKKU 2
- Zustandsbyte
- absolute Speicheradresse SAZ. Hinter SAZ erscheint dann ein "?".

Die Unterbrechung der Statusbearbeitung hat keinen Einfluss auf die Programmbearbeitung, sondern macht nur deutlich, dass die angezeigten Daten ab der Unterbrechungsstelle nicht mehr gültig sind.

Zielsystem >Diese Testfunktion gibt den Zustand eines beliebigen Operanden
(Eingänge, Ausgänge, Merker, Datenwort, Zähler oder Zeiten) am Ende
einer Programmbearbeitung an.Diese Informationen worden aus dem Prozessabbild der ausgesuchten

Diese Informationen werden aus dem Prozessabbild der ausgesuchten Operanden entnommen. Während der "Bearbeitungskontrolle" oder in der Betriebsart STOP wird bei den Eingängen direkt die Peripherie eingelesen. Andernfalls wird nur das Prozessabbild der aufgerufenen Operanden angezeigt.

Steuern von Ausgängen

Dadurch kann die Verdrahtung und die Funktionstüchtigkeit von Ausgabebaugruppen kontrolliert werden.

Auch ohne Steuerungsprogramm können Ausgänge auf den gewünschten Signalzustand eingestellt werden. Das Prozessabbild wird dabei nicht verändert, die Sperre der Ausgänge jedoch aufgehoben.

Steuern von Variablen

Folgende Variablen können geändert werden:

E, A, M, T, Z und D.

Unabhängig von der Betriebsart der CPU wird das Prozessabbild binärer und digitaler Operanden verändert.

In der Betriebsart RUN wird die Programmbearbeitung mit den geänderten Prozessvariablen ausgeführt. Im weiteren Programmablauf können sie jedoch ohne Rückmeldung wieder verändert werden.

Die Prozessvariablen werden asynchron zum Programmablauf gesteuert.

Teil 4 Serielle Kommunikation

Überblick Inhalt dieses Kapitels ist der Einsatz der seriellen RS232-Schnittstelle der CPU. Sie erhalten hier alle Informationen, die zum Einsatz der seriellen Schnittstelle, der CPU erforderlich sind.

Inhalt

Thema		Seite
Teil 4	Serielle Kommunikation	
Schne	Ileinstieg	
Protok	colle und Prozeduren	
RS232	2-Schnittstelle	
Komm	unikationsprinzip	
Schnit	tstellen initialisieren	
Schnit	tstellen-Parameter	
Schnit	tstellenkommunikation	

Schnelleinstieg

AllgemeinDie CPU 21x-2BS03 ermöglicht die serielle Prozessankopplung zu ver-
schiedenen Ziel- oder Quellsystemen. Zur seriellen Kommunikation besitzt
die CPU zwei RS232-Schnittstellen.
Die Kommunikation erfolgt mittels Hantierungsbausteinen, die sich als
Bibliothek in der CPU befinden.

Protokolle Unterstützt werden die Protokolle bzw. Prozeduren ASCII, STX/ETX, 3964(R) und RK512.

Parametrierung Die Parameterübertragung an den Kommunikationsprozessor (CP) erfolgt zur Laufzeit mit einem SEND (SFC 230) mit Auftrags-Nr. 201. Hierbei werden die Parameter in einem DB angelegt, dessen Aufbau sich nach dem gewünschten Protokoll richtet.

Zur Aktivierung der Parameter ist nach dem SEND ein RESET (SFC 234) mit Auftrags-Nr. 0 auszuführen.

Hinweis!

Bitte beachten Sie, dass den Aufträgen SEND, RECEIVE, FETCH und RESET immer ein "VKE"=1 (Verknüpfungsergebnis) voranzustellen ist, da diese ansonsten nicht ausgeführt werden.

Kommunikation Der interne Kommunikationsprozessor der CPU 21x-2BS03 ist über ein Dual-Port-RAM, auch "Kachel" genannt, direkt mit dem CPU-Teil verbunden. Diese Kachel steht auf der CPU-Seite als Standard-CP-Interface zur Verfügung. Der Datenaustausch findet über die Standard Hantierungsbausteine (SEND, RECEIVE und FETCH) statt. Die Kommunikation über die entsprechenden Protokolle regeln Verbindungsaufträge, die im Anwenderprogramm zu programmieren sind. Hierbei kommen folgende SFCs zum Einsatz:

SFC	Bezeichnung	Beschreibung
SFC 230	SEND	Send über Kachel (Kachelkommunikation)
SFC 231	RECEIVE	Receive über Kachel (Kachelkommunikation)
SFC 232	FETCH	Fetch über Kachel (Kachelkommunikation)
SFC 233	CONTROL	Control für Kachelkommunikation
SFC 234	RESET	Reset für Kachelkommunikation
SFC 235	SYNCHRON	Synchron für Kachelkommunikation
SFC 236	SEND_ALL	Send_All über Kachel (Kachelkommunikation)
SFC 237	RECV_ALL	Receive_All über Kachel (Kachelkommunikation)

ASCII	STX/ETX 3964(R)	RK512	SFC	Name
х	x	х	SFC 230	SEND
х	x		SFC 231	RECEIVE
		х	SFC 232	FETCH
х	x	х	SFC 233	CONTROL
х	x	х	SFC 234	RESET
х	x	х	SFC 235	SYNCHRON
X	x	х	SFC 236	SEND_ALL
X	x	х	SFC 237	RECV_ALL

Je nach Protokoll kommen folgende Hantierungsbausteine zum Einsatz:

Protokolle und Prozeduren

Übersicht	 Die CPU unterstützt folgende Protokolle und Prozeduren: ASCII-Übertragung STX/ETX 3964(R) mit RK512
ASCII	Die Datenkommunikation via ASCII ist die einfachste Form der Kommunikation. Die Zeichen werden 1 zu 1 übergeben. Zur logischen Trennung der Telegramme ist es erforderlich, dass die Zeichenverzugszeit (ZVZ) des Empfängers vom Sender eingehalten wird. Hierbei ist die ZVZ in Millisekunden (ms) anzugeben und muss größer gleich 2ms sein. Was beim Empfänger die Zeichenverzugszeit ist, ist beim Sender die "Zeit nach Auftrag" (ZNA). Mit diesen beiden Zeitangaben können Sie eine einfach serielle SPS-Kommunikation aufbauen. Ein Sendeauftrag wird erst dann mit "Auftrag ohne Fehler" (AFOF) gekennzeichnet, wenn die Daten gesendet wurden. Ein neuer Auftrag wird erst dann gestartet, wenn die ZNA abgelaufen ist. Wird ZNA auf 0 gesetzt, ist die Sendefolge über das Anwenderprogramm zu steuern.
STX/ETX	 STX/ETX ist ein einfaches Protokoll mit Start- und Ende-Kennung. Hierbei stehen STX für Start of Text und ETX für End of Text. Die Prozedur STX/ETX wird zur Übertragung von ASCII-Zeichen (20h7Fh) eingesetzt. Sie arbeitet ohne Blockprüfung (BCC). Sollen Daten von der Peripherie eingelesen werden, muss das Start-Zeichen vorhanden sein, anschließend folgen die zu übertragenden Zeichen. Danach muss das Ende-Zeichen vorliegen. Die Nutzdaten, d.h. alle Zeichen zwischen Start- und Ende-Kennung, werden nach Empfang des Schlusszeichens an die CPU übergeben. Beim Senden der Daten von der CPU an ein Peripheriegerät werden die Nutzdaten an die CPU übergeben und von dort mit angefügten Start- und Endezeichen über die serielle Schnittstelle an den Kommunikationspartner übertragen.
	Telegrammaufbau: $STX1 - STX2 - Z1 - Z2 - // Zn - ETX1 - ETX2 - \rightarrow zvz \leftarrow$
	Sie können bis zu 2 Anfangs- und Endezeichen frei definieren. Es kann mit 1, 2 oder keiner Start- und mit 1, 2 oder keiner Ende-Kennung gearbeitet werden. Als Start- bzw. Ende-Kennung sind alle Hex-Werte von 01h bis 1Fh zulässig. Zeichen größer 1Fh werden ignoriert und nicht berücksichtigt. In den Nutzdaten sind Zeichen kleiner 20h nicht erlaubt und können zu Fehlern führen. Die Anzahl der Start- und Endezeichen kann

unterschiedlich sein (1 Start, 2 Ende bzw. 2 Start, 1 Ende oder andere Kombinationen). Wird kein Ende-Zeichen definiert, so werden alle gelesenen Zeichen nach Ablauf einer parametrierbaren Zeichenverzugszeit

(Timeout) an die CPU übergeben.

3964(R) Die Prozedur 3964(R) steuert die Datenübertragung bei einer Punkt-zu-Punkt-Kopplung zwischen der CPU 21x-2BS03 und einem Kommunikationspartner. Die Prozedur fügt bei der Datenübertragung den Nutzdaten Steuerzeichen hinzu. Durch diese Steuerzeichen kann der Kommunikationspartner kontrollieren, ob die Daten vollständig und fehlerfrei bei ihm angekommen sind.

Die Prozedur wertet die folgenden Steuerzeichen aus:

- STX Start of Text
- DLE Data Link Escape
- ETX End of Text
- BCC Block Check Character (nur bei 3964R)
- NAK Negative Acknowledge

Sie können pro Telegramm maximal 255Byte übertragen.

Hinweis!

Wird ein "DLE" als Informationszeichen übertragen, so wird dieses zur Unterscheidung vom Steuerzeichen "DLE" beim Verbindungsauf- und -abbau auf der Sendeleitung doppelt gesendet (DLE-Verdoppelung).

Der Empfänger macht die DLE-Verdoppelung wieder rückgängig.

Unter 3964R <u>muss</u> einem Kommunikationspartner eine niedrigere Priorität zugeordnet sein. Wenn beide Kommunikationspartner gleichzeitig einen Sendeauftrag erteilen, dann stellt der Partner mit niedriger Priorität seinen Sendeauftrag zurück.

- **3964(R) mit RK512** Das RK512 ist ein erweitertes 3964(R). Es wird lediglich vor der Übertragung der Nutzdaten ein Telegrammkopf gesendet. Der Telegrammkopf enthält für den Kommunikationspartner Infos über Größe, Art und Länge der Nutzdaten.
- **Prozedurablauf** Im folgenden wird der Aufbau der Prozedur und der Telegramme beschrieben:

Koordinierungsmerker Der Koordinierungsmerker wird im Aktiv-Betrieb im Partner-AG bei Empfang eines Telegramms gesetzt. Dies geschieht sowohl bei Eingabeals auch bei Ausgabe-Befehlen. Ist der Koordinierungsmerker gesetzt und wird ein Telegramm mit diesem Merker empfangen, so werden die Daten nicht übernommen (bzw. übergeben), sondern es wird eine Fehler-Reaktionsmeldung gesendet (Fehlercode 32h). In diesem Fall muss der Koordinierungsmerker vom Anwender im Partner-AG zurückgesetzt werden.

Soll ein Telegramm keinen Koordinierungsmerker enthalten, muss FFFFh angegeben werden.
Time-Out-ZeitenAls Time-Out gelten folgende Zeiten :Quittungs-Verzugs-Zeit:(QVZ) = 2000 msZeichen-Verzugs-Zeit:(ZVZ) = 220 ms

QVZ wird überwacht zwischen STX und DLE sowie zwischen BCC und DLE. ZVZ wird während des gesamten Telegramm-Empfangs überwacht.

Bei Verstreichen der QVZ nach STX wird erneut STX gesendet, nach 3^{*}) Versuchen wird ein NAK gesendet und der Verbindungsaufbau abgebrochen. Dasselbe geschieht, wenn nach einem STX ein NAK oder ein beliebiges Zeichen empfangen wird.

Bei Verstreichen der QVZ nach dem Telegramm (nach BCC-Byte) oder bei Empfang eines Zeichens ungleich DLE werden der Verbindungsaufbau und das Telegramm wiederholt. Auch hier werden 3^{*} Versuche unternommen, danach ein NAK gesendet und die Übertragung abgebrochen.

*) einstellbar als Parameter

PassivbetriebWenn der Prozedurtreiber auf den Verbindungsaufbau wartet und ein
Zeichen ungleich STX empfängt, sendet er NAK. Bei Empfang eines
Zeichens NAK sendet der Prozedurtreiber keine Antwort.
Wird beim Empfang die ZVZ überschritten, wird ein NAK gesendet und auf
erneuten Verbindungsaufbau gewartet.
Wenn der Prozedurtreiber beim Empfang des STX noch nicht bereit ist,
sendet er ein NAK.

Block-Check-
CharacterZur weiteren Datensicherung wird bei der Prozedur 3964R am Ende des
Telegramms ein BlockCheck-Character angehängt. Das BCC-Byte wird
durch eine XOR-Verknüpfung über die Daten des gesamten Telegramms
einschließlich DLE/ETX gebildet.

Beim Empfang eines BCC-Bytes, das vom selbst ermittelten abweicht, wird anstatt des DLEs ein NAK gesendet.

Initialisierungskonflikt Versuchen beide Partner gleichzeitig innerhalb der QVZ einen Verbindungsaufbau, so sendet der Partner mit der niedrigeren Priorität das DLE und geht auf Empfang.

DLE Das DLE-Zeichen in einem Telegramm wird vom Prozedurtreiber verdoppelt, d.h. es wird DLE/DLE gesendet. Beim Empfang werden doppelte DLEs als ein DLE im Puffer abgelegt. Als Ende des Telegramms gilt immer die Kombination DLE/ETX/BCC (nur bei 3964R).

Die Steuercodes :	02h = STX
	03h = ETX
	10h = DLE
	15h = NAK

RS232-Schnittstelle

Eigenschaften	 Schnittstelle kompatibel zur COM Schnittstelle eines PCs Unterstützt werden die Protokolle ASCII, STX/ETX, 3964(R) und RK51 Empfangs- und Sendepuffer haben jeweils eine Größe von 1024Byte Die maximale Telegrammlänge beträgt 1024Byte 						
Merkmale RS232- Schnittstelle	 Logisch Punkt-z RS232 Datenü 	he Zustände als Spar zu-Punkt-Kopplung m) in 3-Draht-Technik k ibertragungsrate bis 5	nungspegel nit serieller Volldup ois zu einer Entfern o7,6kBaud	lex-Übertragung (nur bei ung von 15m			
Anschluss Schnittstelle	Über den 9poligen Stecker können Sie eine serielle Punkt-zu-Punkt bindung herstellen.						
	9poliger S	stecker	Anschluss RS2	32			
	Pin	Belegung	CPU	Periphery			
	1	CD-	TxD3				
	2	RxD	BxD 2				
	3	TxD	5				
	4	DTR-	GND	GND			

GND

DSR-

RTS-

CTS-

RI-

Folgende RS232-Signale werden von der CPU 21x-2BS03 unterstützt:

TxD Transmit Data

5

6

7

8

9

Die Sendedaten werden über die TxD-Leitung übertragen. Die Sendeleitung wird von der CPU 21x-2BS03 im Ruhezustand auf logisch "1" gehalten.

RTS

CTS

shield

RxD Receive Data

Die Empfangsdaten kommen über die RxD-Leitung an. Die Empfangsleitung muss vom Sendepartner im Ruhezustand auf logisch "1" gehalten werden.

Kommunikationsprinzip

Übersicht

Die Kommunikation wird mittels der integrierten Hantierungsbausteine (siehe unten) abgewickelt.

Die CPU entscheidet aufgrund der Parametrierung, wie die Datenübergabe stattfindet. In den Standard-Modi wird durch die SEND/RECEIVE-Bausteine der Auftrags-Anstoß und durch die "ALL"-Bausteine die Nutz-datenkommunikation durchgeführt.

Bei der Kommunikation kommen folgende Bausteine zum Einsatz:

Nr.	Bezeichnung	Beschreibung
SFC 235	SYNCHRON	Synchronisation zwischen CPU und CP und Vorgabe der Blockgröße
SFC 230	SEND	Auslösen eines Sendeauftrags
SFC 236	SEND-ALL	Nutzdaten senden
SFC 231	RECEIVE	Auslösen eines Empfang-Auftrags
SFC 237	RECEIVE-ALL	Nutzdaten empfangen
SFC 232	FETCH	Auslösen eines Holauftrages
SFC 233	CONTROL	Baustein zur Kommunikationskontrolle
SFC 234	RESET	Löscht alle Aufträge und aktiviert neue Parameter

Je nach Protokoll kommen folgende Hantierungsbausteine zum Einsatz:

ASCII	STX/ETX 3964(R)	RK512	SFC	Name
x	x	х	SFC 230	SEND
x	x		SFC 231	RECEIVE
		х	SFC 232	FETCH
x	х	х	SFC 233	CONTROL
x	x	х	SFC 234	RESET
x	х	х	SFC 235	SYNCHRON
x	х	х	SFC 236	SEND_ALL
x	х	х	SFC 237	RECV_ALL

Programmierung In kurzen Schritten soll gezeigt werden, wie Sie bei der Programmierung vorzugehen haben:

Anlauf-OB100:

- Rufen Sie mit SFC 235 SYNCHRON auf und geben Sie die gewünschte Blockgröße an (Kachelbasisadresse=0, Blockgröße, PAFE)
- Parametrieren Sie die Schnittstellen mit SEND (SFC 230) mit Auftrags-Nr. 201 und Parameter-DB
- Zur Übernahme der Parameter rufen Sie RESET (SFC 234) mit Auftrags-Nr. 0 auf

Zyklus-OB1:

- SEND- und RECEIVE-Aufträge für Sende- und Empfangsanstoß generieren
- SEND ALL und RECEIVE ALL-Aufträge für Nutzdatenübertragung generieren

Nachfolgend finden Sie hierzu eine nähere Beschreibung.

Schnittstellen initialisieren

Übersicht

Die Initialisierung der Schnittstellen findet im OB 100 statt und sollte nach folgender Vorgehensweise durchgeführt werden:

- Rufen Sie mit SFC 235 SYNCHRON auf und geben Sie die gewünschte Blockgröße an (Kachelbasisadresse=0, Blockgröße, PAFE).
- Parametrieren Sie die Schnittstellen mit SEND (SFC 230) mit Auftrags-Nr. 201 und Parameter-DB.
- Zur Übernahme der Parameter rufen Sie RESET (SFC 234) mit Auftrags-Nr. 0 auf.

SFC 235 SYNCHRON

Der Baustein stellt im CPU-Anlauf die Synchronisation zwischen CPU und CP her und ist daher im Anlauf-OB OB 100 aufzurufen. Gleichzeitig wird der Übergabebereich der Schnittstelle gelöscht und voreingestellt, sowie die Blockgröße zwischen CP und CPU ausgehandelt.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellenummer
BLGR	IN	INT	Blockgröße
PAFE	OUT	BYTE	Parametrierfehler

SSNR Nummer der logischen Schnittstelle (Kacheladresse) auf die sich der betreffende Auftrag bezieht. SSNR muss 0 sein!

Blockgröße Zur Vermeidung von langen Zykluszeiten ist es sinnvoll große Datenmengen in kleinen Blöcken zwischen CPU und CP zu übertragen. Die Größe dieser Blöcke stellen Sie über die "Blockgröße" ein.

Hierbei bedeutet große Bockgröße = hoher Datendurchsatz aber auch lange Laufzeit und damit hohe Zykluszeitbelastung.

Kleine Blockgröße = kleiner Datendurchsatz aber auch kleine Laufzeiten der Bausteine.

Als Blockgröße haben Sie folgende Einstellmöglichkeiten:

Wert	Blockgrö	ße	Wert	Blockgröße
0	Default (64Byte)	4	128Byte
1	16Byte		5	256Byte
2	32Byte		6	512Byte
3	64Byte		255	512Byte
Paramete	erart	: Integer		
Möglicher Bereich		: 0 255		

Beispiel CALL SFC 235 SSNR:=0 BLGR:=6 PAFE:=MB199 SFC 230 - SEND
mit ANR=201Mit einem SEND (SFC 230), ANR=201 und DB können Sie Parameter an
den CP übergeben.und Parameter-DBBitte beachten Sie, dass ein Sende-Auftrag nur dann ausgeführt wird, wenn
folgende Bedingungen erfüllt sind:

- dem SEND wurde ein VKE "1" übergeben
- im Anzeigenwort ist das Bit "Auftrag läuft" zurückgesetzt

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellennummer
ANR	IN	INT	Auftragsnummer
IND	IN	INT	Adressierungsmodus
QANF	IN	ANY	Zeiger auf Datenquelle
PAFE	OUT	BYTE	Parametrierungsfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

SFC 234 - RESET Mit einem RESET mit Auftragsnummer 0 werden alle Aufträge abgebrochen und die zuvor geladenen Parameter aktiviert.

Wie bei SEND müssen Sie diesem Baustein ein VKE=1 vorschalten.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellennummer
ANR	IN	INT	Auftragsnummer
PAFE	OUT	BYTE	Parametrierfehler

Beispiel OB100	CALL SFC 235 SSNR:=0 BLGR:=6 PAFE:=MB199	SYNCHRON
	SET CALL SFC 230 SSNR:=0 ANR :=201	VKE=1 SEND: Parameter für COM1 Kennung für Parametrierung
	IND :=0 QANF:=P#DB9.DBX0.0 BYTE 20 PAFE:=MB198 ANZW:=MD200	Pointer auf Parameter für COM1
	SET CALL SFC 230 SSNR:=0 ANR :=201 IND :=0 QANF:=P#DB9.DBX20.0 BYTE 20	VKE=1 SEND: Parameter für COM2 Kennung für Parametrierung Pointer auf Parameter für COM2
	PAFE:=MB198 ANZW:=MD200 SET CALL SFC 234 SSNR:=0 ANR :=0 DAFE:-MB197	VKE=1 RESET Kennung für RESET

Schnittstellen-Parameter

AufbauDie Parameterübertragung an den Kommunikationsprozessor erfolgt zur
Laufzeit unter Einsatz des SFC 230 mit Auftrags-Nr. 201. Hierbei sind die
Parameter für die Protokolle in einem DB abzulegen.Zur Altivierung der Deremeter ist nach der Übertregung mit SEC 224 ein

Zur Aktivierung der Parameter ist nach der Übertragung mit SFC 234 ein RESET auszuführen.

Datenbyte	Тур	Bezeichner		Werte	Default
0	BYTE	Kanal	COM 1	1	
			COM 2	2	
1	BYTE	Modi	MODI_NONE (deaktiviert)	0	0
			MODI_1 (Parameter nachfolgend)	81h	
2	BYTE	Baudrate	BAUDRATE_DEF	00h	09h
			BAUDRATE_150	01h	
			BAUDRATE_300	02h	
			BAUDRATE_600	03h	
			BAUDRATE_1K2	04h	
			BAUDRATE_1K8	05h	
			BAUDRATE_2K4	06h	
			BAUDRATE_4K8	07h	
			BAUDRATE_7K2	08h	
			BAUDRATE_9K6	09h	
			BAUDRATE_14K4	0Ah	
			BAUDRATE_19K2	0Bh	
			BAUDRATE_38K4	0Ch	
			BAUDRATE_57K6	0Dh	
3	BYTE	DataBits	DATABIT_5	0	3
			DATABIT_6	1	
			DATABIT_7	2	
			DATABIT_8	3	
4	BYTE	Parity	PARITY_NONE	0	0
			PARITY_ODD	1	
			PARITY_EVEN	3	
5	BYTE	StopBits	STOPBIT_1	1	1
			STOPBIT_1_5	2	
			STOPBIT_2	3	
6	BYTE	FlowControl	FLOW_NONE	0	1
			FLOW_HARDWARE	1	
			FLOW_XON_XOFF	2	
7	BYTE	Protocol	PROTOCOL_ASCII	01h	01h
			PROTOCOL_STXETX_HTB	02h	
			PROTOCOL_3964	03h	
			PROTOCOL_3964R	04h	
			PROTOCOL_3964_RK512	05h	
			PROTOCOL 3964R RK512	06h	

Allgemein für jeden benutzten Kanal:

Zusätzliche Abhängig von dem eingestellten Protokoll sind noch folgende Parameter im DB anzugeben: Parameter

wenn PROTOCOL_ASCII:

Datenbyte	Тур	Bezeichner	Werte	Default
Sendekanal				
8, 9	WORD	BufAnz	1 n	1
10, 11	WORD	BufSize	16 1024	256
12, 13	WORD	ZNA, Zeit nach Auftrag	0 n	500
Empfangskanal				
14, 15	WORD	BufAnz	1 n	1
16, 17	WORD	BufSize	16 1024	256
18, 19	WORD	ZVZ, Zeichenverzugszeit	2 n	200

wenn PROTOCOL_STXETX:

Datenbyte	Тур	Bezeichner	Werte	Default
Sendekanal				
8, 9	WORD	BufAnz	1 n	1
10, 11	WORD	BufSize	16 1024	256
12, 13	WORD	ZNA, Zeit nach Auftrag	0 n	0
Startkennung				
14, 15	WORD	Anzahl	1, 2	1
16	BYTE	Kennung1	0 255	STX
17	BYTE	Kennung2	0 255	STX
Endekennung				
18, 19	WORD	Anzahl	1, 2	1
20	BYTE	Kennung1	0 255	ETX
21	BYTE	Kennung2	0 255	ETX
Empfangskanal				
22, 23	WORD	BufAnz	1 n	1
24, 25	WORD	BufSize	16 1024	256
26, 27	WORD	TMO, Timeout	2 n	200
Startkennung				
28, 29	WORD	Anzahl	1, 2	1
30	BYTE	Kennung1	0 255	STX
31	BYTE	Kennung2	0 255	STX
Endekennung				
32, 33	WORD	Anzahl	1, 2	1
34	BYTE	Kennung1	0 255	ETX
35	BYTE	Kennung2	0 255	ETX

Datenbyte	Тур	Bezeichner	Werte	Default
Sende-/				
Empfangkanal				
8, 9	WORD	BufAnz	1 n	1
10, 11	WORD	BufSize	16 1024	128
12, 13	WORD	ZNA, Zeit nach Auftrag	0 n	0
14, 15	WORD	ZVZ Zeichenverzugszeit	1 n	200
16, 17	WORD	QVZ Quittungsverzugszeit	1 n	500
18, 19	WORD	BWZ Blockwartezeit	1 n	10000
20, 21	WORD	STX Anzahl Wiederholungen	1 n	3
		Verbindungsaufbau		
22, 23	WORD	DBL Anzahl Wiederholungen	1 n	6
		Datenblöcke		
24, 25	WORD	Priorität 0==Low, >0==High	0, 1	1

wenn PROTOCOL_3964(R):

wenn PROTOCOL_3964(R)_RK512:

Datenbyte	Тур	Bezeichner	Werte	Default
Sende-/				
Empfangkanal				
8, 9	WORD	BufAnz	1 n	1
10, 11	WORD	BufSize	16 1024	128
12, 13	WORD	ZNA, Zeit nach Auftrag	0 n	0
14, 15	WORD	ZVZ Zeichenverzugszeit	1 n	200
16, 17	WORD	QVZ Quittungsverzugszeit	1 n	500
18, 19	WORD	BWZ Blockwartezeit	1 n	10000
20, 21	WORD	STX Anzahl Wiederholungen	1 n	3
		Verbindungsaufbau		
22, 23	WORD	DBL Anzahl Wiederholungen	1 n	6
		Datenblöcke		
24, 25	WORD	Priorität 0==Low, >0==High	0, 1	1
26, 27	WORD	QVZ für Anwenderquittung	1 n	5000

Fest definierte Parameter

Folgende Parameter sind fest definiert und können nicht geändert werden:

Parameter	Einstellung	
Kachelbasisadresse	0	
Kachelanzahl	1	
Auftragsnummer	1: SEND für COM 1	
	2: RECEIVE für COM 1	
	3: SEND für COM 2	
	4: RECEIVE für COM 2	
	201: für SEND zur Parametrierung	
Auftragspriorität	2	

Schnittstellenkommunikation

Übersicht

Die Kommunikation erfolgt über folgende Hantierungsbausteine im OB1:

Nr.	Bezeichnung	
SFC 230	SEND	Auslösen eines Sendeauftrags
SFC 236	SEND-ALL	Nutzdaten senden
SFC 231	RECEIVE	Auslösen eines Empfang-Auftrags
SFC 237	RECEIVE-ALL	Nutzdaten empfangen
SFC 232	FETCH	Auslösen eines Holauftrages
SFC 233	CONTROL	Baustein zur Kommunikationskontrolle

Zyklus-OB1:

- SEND- und RECEIVE-Aufträge für Sende- und Empfangsanstoß generieren
- SEND ALL und RECEIVE ALL-Aufträge für Nutzdatenübertragung generieren

Nachfolgend finden Sie eine Zusammenfassung dieser Bausteine.

SFC 230 - SEND Der SEND-Baustein dient zum Auslösen eines Sende-Auftrags zu einem CP.

Bitte beachten Sie, dass ein Sende-Auftrag nur dann ausgeführt wird, wenn folgende Bedingungen erfüllt sind:

- dem SEND wurde ein VKE "1" übergeben
- im Anzeigenwort ist das Bit "Auftrag läuft" zurückgesetzt

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellennummer
ANR	IN	INT	Auftragsnummer
IND	IN	INT	Adressierungsmodus
QANF	IN	ANY	Zeiger auf Datenquelle
PAFE	OUT	BYTE	Parametrierungsfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

- SFC 236 -SEND_ALL Kann der CP die Daten direkt übernehmen, überträgt der SEND-Baustein die angeforderten Daten in einem Zug zum CP. Signalisiert der CP jedoch, dass er nur die Parameter des Auftrages wünscht oder ist die Anzahl der zu übergebenden Daten zu groß, werden dem CP nur die Sende-Parameter bzw. die Parameter mit dem ersten Datenblock übergeben. Die Daten oder der Folgeblock zu diesen Aufträgen fordert der CP über SEND_ALL bei der CPU an. Hierzu ist es jedoch erforderlich, dass mindestens einmal im Zyklus der Baustein SEND_ALL aufgerufen wird.
- SFC 231 RECEIVEDer RECEIVE-Baustein dient zum Empfangen von Daten von einem CP.
Der RECEIVE-Baustein ist im zyklischen Teil des Anwenderprogramms
aufzurufen.
Bitte beachten Sie, dass ein Empfangs-Auftrag nur dann ausgeführt wird,
wenn folgende Bedingungen erfüllt sind:
 - dem RECEIVE wurde ein VKE "1" übergeben
 - der CP hat den Auftrag freigegeben (Bit "Handshake sinnvoll" = 1)

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellenummer
ANR	IN	INT	Auftragsnummer
IND	IN	INT	Adressierungsmodus
ZANF	IN	ANY	Zeiger auf Datenziel
PAFE	OUT	BYTE	Parametrierungsfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

SFC 237 - Mit dem RECEIVE_ALL-Baustein werden die Daten, die vom CP empfangen werden, vom CP an die CPU unter Verwendung der eingestellten Blockgröße übermittelt.

Die Lage und Größe des Datenbereichs, der mit RECEIVE_ALL zu übermitteln ist, muss zuvor über einen RECEIVE-Aufruf definiert werden.

Im Anzeigenwort, das dem zu bearbeitenden Auftrag zugeordnet ist, werden die Bits "Enable/Disable", "Datenübernahme erfolgt" sowie "Datenübernahme/-übergabe läuft" ausgewertet oder beeinflusst und im Folgewort die "Empfangslänge" angezeigt.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellenummer
PAFE	OUT	BYTE	Parametrierfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

Hinweis!

In folgenden Fällen ist mindestens einmal RECEIVE_ALL im Zyklus-Baustein OB1 aufzurufen:

- wenn der CP selbständig Daten an die CPU senden soll.
- wenn ein CP-Auftrag mit RECEIVE angestoßen wird, der CP die Daten zu diesem Auftrag jedoch erst über die "Hintergrundkommunikation" an die CPU weitergeben kann.
- wenn die Anzahl der Daten, die mit einem RECEIVE an die CPU übergeben werden sollen, größer als die eingestellte Blockgröße ist.

SFC 232 - FETCH Der FETCH-Baustein dient dem Auslösen eines "Holauftrags" auf einer Gegenstation.

Mit dem FETCH-Auftrag werden Daten-Quelle und -Ziel definiert und die Datenquelle an die Gegenstation übertragen.

Bei der CPU von VIPA erfolgt die Angabe von Quelle und Ziel über einen Zeiger-Parameter.

Die Gegenstation stellt die Daten aus der Quelle bereit und schickt diese über SEND_ALL an die anfordernde Station zurück. Über RECEIVE_ALL werden die Daten empfangen und in *Ziel* abgelegt.

Die Aktualisierung des Anzeigenworts erfolgt über FETCH bzw. CONTROL.

Bitte beachten Sie, dass ein Hol-Auftrag nur dann ausgeführt wird, wenn folgende Bedingungen erfüllt sind:

- dem FETCH wurde ein VKE "1" übergeben
- im Anzeigenwort ist das Bit "Auftrag läuft" zurückgesetzt

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellenummer
ANR	IN	INT	Auftragsnummer
IND	IN	INT	Adressierungsmodus
ZANF	IN	ANY	Zeiger auf Datenziel
PAFE	OUT	BYTE	Parametrierungsfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

SFC 233 - CONTROL

Der CONTROL-Baustein hat folgende Aufgaben:

- Aktualisierung des Anzeigenworts
- Abfrage, ob ein bestimmter Auftrag des CP zur Zeit "tätig" ist, z.B. Nachfrage nach einem Empfangstelegramm
- Abfrage des CP, welcher Auftrag z.Z. bearbeitet wird
- Der Baustein ist nicht VKE abhängig und sollte im zyklischen Teil des Programms aufgerufen werden.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellennummer
ANR	IN	INT	Auftragsnummer
PAFE	OUT	BYTE	Parametrierungsfehler
ANZW	IN_OUT	DWORD	Anzeigenwort