System SLIO FM | 054-1CB00 | Manual HB300 | FM | 054-1CB00 | en | 25-10 Motion Module - 2xDC - FM 054 YASKAWA Europe GmbH Philipp-Reis-Str. 6 65795 Hattersheim Germany Tel.: +49 6196 569-300 Fax: +49 6196 569-398 Email: info@yaskawa.eu Internet: www.yaskawa.eu.com ## Table of contents | 1 | Genera | General | | | | |---|--------|--|----|--|--| | | 1.1 | About this manual | 6 | | | | | 1.2 | Copyright © YASKAWA Europe GmbH | 7 | | | | | 1.3 | Safety instructions | 8 | | | | 2 | Basics | and mounting | 11 | | | | | 2.1 | Safety notes for the user | 11 | | | | | 2.2 | System conception | 12 | | | | | 2.2.1 | Overview | 12 | | | | | 2.2.2 | Components | 13 | | | | | 2.2.3 | Accessories | 16 | | | | | 2.2.4 | Hardware revision | 18 | | | | | 2.3 | Dimensions | 18 | | | | | 2.4 | Grounding concept | 21 | | | | | 2.4.1 | Shielding | 21 | | | | | 2.5 | Mounting 8x periphery modules | 23 | | | | | 2.6 | Mounting 16x periphery modules | 26 | | | | | 2.7 | Wiring 8x periphery modules | 29 | | | | | 2.8 | Wiring 16x periphery modules | 30 | | | | | 2.9 | Wiring power modules | 31 | | | | | 2.10 | Demounting 8x periphery modules | 35 | | | | | 2.11 | Demounting 16x periphery modules | 38 | | | | | 2.12 | Easy Maintenance. | 41 | | | | | 2.13 | Trouble shooting - LEDs | 42 | | | | | 2.14 | Industrial security and installation guidelines. | 43 | | | | | 2.14.1 | Industrial security in information technology | 43 | | | | | 2.14.2 | Installation guidelines | 45 | | | | | 2.15 | General data for the System SLIO | 47 | | | | | 2.15.1 | Use in difficult operating conditions | 49 | | | | 3 | Hardw | are description | 50 | | | | | 3.1 | Properties | 50 | | | | | 3.2 | Structure | 51 | | | | | 3.3 | Block diagram | 54 | | | | | 3.4 | Technical data | 55 | | | | 4 | Deploy | /ment | 59 | | | | | 4.1 | Basics. | 59 | | | | | 4.1.1 | DC motor module. | 60 | | | | | 4.1.2 | Structure of a positioning control | 60 | | | | | 4.1.3 | Encoder - signal evaluation | 62 | | | | | | | | | | | 4.2 | Commissioning | 63 | |--------|---|-----| | 4.2.1 | Installation | 63 | | 4.2.2 | Inspections and tests before the test operation | 63 | | 4.2.3 | Start-up of the System SLIO motion module | 63 | | 4.3 | Connecting a motor | 65 | | 4.3.1 | Connection options | 65 | | 4.4 | Drive profile | 66 | | 4.4.1 | Overview | 66 | | 4.4.2 | States | 67 | | 4.4.3 | Operating modes | 68 | | 4.5 | Homing | 69 | | 4.5.1 | Homing by means of a homing switch | 70 | | 4.5.2 | Homing to actual position | 72 | | 4.5.3 | Homing by means of current limitation | 73 | | 4.6 | PtP positioning profile | 75 | | 4.6.1 | Examples | 80 | | 4.7 | Velocity profile | 86 | | 4.8 | Torque control | 90 | | 4.9 | Deployment I/O1I/O4. | 92 | | 4.9.1 | Objects | 93 | | 4.9.2 | Usage as input for encoder | 94 | | 4.10 | Brake control | 96 | | 4.11 | In-/Output area | 97 | | 4.12 | Acyclic channel | 99 | | 4.13 | Parameter data | 101 | | 4.14 | Scaling and units | 102 | | 4.15 | Monitoring and error reaction | 102 | | 4.15.1 | Overview | 102 | | 4.15.2 | Monitoring | 104 | | 4.16 | Diagnostics and interrupt | 107 | | Object | t dictionary | 109 | | 5.1 | Use | 109 | | 5.2 | Objects | 110 | | 5.2.1 | Overview | 110 | | 5.2.2 | Information about the product - 0x10000x1018 | 113 | | 5.2.3 | Passwords and security - 0x1100 | 115 | | 5.2.4 | System command - 0x6100 | 115 | | 5.2.5 | Digital inputs I/O1I/O4 - 0x7100 | 116 | | 5.2.6 | Digital output I/O1I/O4 - 0x7200 | 117 | | 5.2.7 | Driver command - 0x8100 | 119 | | 5.2.8 | Configure drive - 0x8180 | 126 | | 5.2.9 | Options - 0x8200 | 126 | | | | | 5 | 5.2.10 | Operating modes - 0x8280 | 127 | |--------|--|-----| | 5.2.11 | Homing - 0x8300 | 129 | | 5.2.12 | Parameter for the PtP positioning profile - 0x8400 | 132 | | 5.2.13 | Positions and limit values - 0x8480 | 133 | | 5.2.14 | Velocities and limit values - 0x8500 | 136 | | 5.2.15 | Acceleration and deceleration - 0x8580 | 139 | | 5.2.16 | Currents - 0x8600 | 140 | | 5.2.17 | Voltages - 0x8680 | 143 | | 5.2.18 | Temperatures - 0x8780 | 145 | | 5.2.19 | Motor data - 0x8C00 | 147 | | 5.2.20 | Encoder resolution - 0x8F00. | 148 | General System SLIO About this manual ## 1 General ### 1.1 About this manual #### Objective and contents This manual describes the FM 054-1CB00 of the System SLIO. - It describes the structure, configuration and application. - The manual is targeted at users with good basic knowledge in automation technology. - The manual does not replace sufficient basic knowledge of automation technology or sufficient familiarity with the specific product. - The manual consists of chapters. Each chapter describes a completed topic. - For guidance, the manual provides: - An overall table of contents at the beginning of the manual - References with pages numbers To be able to return to the previous view from a reference in the PDF, you should activate the page navigation in your PDF viewer. #### Validity of the documentation | Product | Order no. | as of version: | | |-------------|-----------|----------------|------------| | FM 054 2xDC | 054-1CB00 | HW: 01 | FW: V1.1.2 | #### **Documentation** In the context of the use of the pertinent Yaskawa product, the manual is to be made accessible to the pertinent qualified personnel in: - Project engineering - Installation department - Commissioning - Operation ## Icons and headings Important passages in the text are highlighted by following icons and headings: ## **DANGER** - Immediate danger to life and limb of personnel and others. - Non-compliance will cause death or serious injury. #### **CAUTION** - Hazardous situation to life and limb of personnel and others. Non-compliance may cause slight injuries. - This symbol is also used as warning of damages to property. #### **NOTICE** - Designates a possibly harmful situation. - Non-compliance can damage the product or something in its environment. Supplementary information and useful tips. System SLIO General Copyright © YASKAWA Europe GmbH ## 1.2 Copyright © YASKAWA Europe GmbH #### All rights reserved This document contains protected information of Yaskawa and may not be disclosed or used outside of an agreement made in advance with Yaskawa and only in accordance with that agreement. This document is protected by copyright laws. Reproduction, distribution, or modification of this document or excerpts thereof is not permitted without the written consent of Yaskawa and the owner of this document, except in accordance with applicable agreements, contracts or licenses. For permission to reproduce or distribute, please contact: YASKAWA Europe GmbH, European Headquarters, Philipp-Reis-Str. 6, 65795 Hattersheim, Germany Tel.: +49 6196 569 300 Fax.: +49 6196 569 398 E-mail: info@yaskawa.eu Internet: www.yaskawa.eu.com #### **Download Center** By entering the product order number in the 'Download Center' at www.yaskawa.eu.com, the pertinent manuals, data sheets, declarations of conformity, certificates and other helpful information for your product can be found. #### **Trademarks** SLIO and SPEED7 are registered trademarks of YASKAWA Europe GmbH. CAN is a registered trademark of CAN in Automation e. V. (CiA). EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. PROFINET and PROFIBUS are registered trademarks of PROFIBUS and PROFINET International (PI). SIMATIC is a registered trademark of Siemens AG. All other trademarks, logos and service or product marks specified herein are owned by their respective companies. #### General terms of use Every effort was made by Yaskawa to ensure that the information contained in this document was complete and correct at the time of publication. Nevertheless, the information contained therein is only owed by Yaskawa as it is available at Yaskawa. Correctness is not assured by Yaskawa, the right to change the information contained herein is always reserved by Yaskawa. There is no obligation to inform the customer of any changes. The customer is requested to actively keep this documentation up to date. The use of the products covered by these instructions, together with the associated documentation, is always at the customer's own risk, in accordance with the applicable guidelines and standards. This documentation describes the hardware and software components and functions of the product. It is possible that units are described which the customer does not have. The exact scope of delivery is described in the respective purchase contract. #### **Document support** Contact your local representative of YASKAWA Europe GmbH if you have errors or questions regarding the content of this document. You can reach YASKAWA Europe GmbH via the following contact: Email: Documentation.HER@yaskawa.eu General System SLIO Safety instructions #### **Technical support** Contact your local representative of YASKAWA Europe GmbH if you encounter problems or have questions regarding the product. If such a location is not available, you can reach the Yaskawa customer service via the following contact: YASKAWA Europe GmbH, European Headquarters, Philipp-Reis-Str. 6, 65795 Hattersheim, Germany Tel.: +49 6196 569 500 (hotline) Email: support@yaskawa.eu ## 1.3 Safety instructions ## General safety instructions #### **DANGER** ## Danger to life due to non-compliance with safety instructions Non-compliance with the safety instructions in the manual can result in serious injury or death. The manufacturer is not responsible for any injuries or damage to the equipment. #### **CAUTION** Before commissioning and operating the components described in this manual, it is essential to note the following: - Modifications to the automation system must only be done in a voltagefree state! - Connection and modification only by trained electricians - National regulations and guidelines in the respective country
of use must be observed and complied with (installation, protective measures, EMC, etc.) System SLIO General Intended use Safety instructions - It is the customer's responsibility to comply with all pertinent standards, codes, or regulations applicable to the use of the product, including those that apply when the Yaskawa product is used in combination with other products. - The customer must confirm that the Yaskawa product is suitable for the customer's plant, machinery and equipment. - If the Yaskawa product is used in a manner not specified by this manual, the protection provided by the Yaskawa product may be impaired and the use may result in material or immaterial damage. - Contact Yaskawa to determine whether use is permitted in the following applications. If the use in the respective application is permissible, the Yaskawa product is to be used by considering additional risk assessments and specifications, and safety measures are to be provided to minimise the dangers in the event of a fault. Special caution is required and protective measures must be taken in the case of: - Outdoor use, use with possible chemical contamination or electrical interference, or use under conditions or in environments which are not described in product catalogs or manuals - Nuclear control systems, combustion systems, railway systems, aviation systems, automotive systems, medical devices, amusement machines and equipment that is specifically regulated by industry or government - Systems, machines and devices that can pose a risk to life or property - Systems that require a high degree of reliability, such as gas, water or electricity supply systems or systems that operate 24 hours a day - Other systems that require a similarly high level of security - Never use the Yaskawa product in an application where failure of the product could cause serious danger to life, limb, health or property without first ensuring that the system is designed to provide the required level of safety with risk warnings and redundancy to avoid the realisation of such dangers and that the Yaskawa product is properly designed and installed. - The connection examples and other application examples described in the product catalogs and manuals of Yaskawa are for reference purposes. Check the functionality and safety of the devices and systems actually to be used before using the Yaskawa product. - To avoid accidental harm to third parties, read and understand all prohibitions on use and precautions, and operate the Yaskawa product correctly. General System SLIO Safety instructions #### Field of application The Yaskawa product is not suited for use in life-support machines or systems. Please contact your Yaskawa representative or Yaskawa distributor if considering the use of the Yaskawa product for special purposes, such as machines or systems used in passenger cars, in medical, aircraft and aerospace applications, for power supply of networks, for electrical power distribution or for underwater applications. #### **DANGER** The device is not permitted for use in explosive environments (EX zone) The system is designed and manufactured for proper use and use in accordance with the user manual and is designed for: - Communication and process control - general control and automation tasks - for industrial use - operation within the environmental conditions specified in the technical data - installation in a cabinet #### **DANGER** If this Yaskawa product is used in applications where failure of the device can result in the loss of human life, a serious accident or physical injury, you must install appropriate safety devices. Death or serious injury can result if you do not install the safety devices properly. #### Disclaimer - (1) The contractual and legal liability of Yaskawa and the legal representatives and vicarious agents of Yaskawa for compensation and reimbursement of expenses in relation to the content of this documentation is excluded or limited as follows: - a) For slightly negligent breaches of *Essential Contractual Duties* arising from the contractual obligation, for Yaskawa the amount of liability is limited to the foreseeable damage typical for the contract. *'Essential Contractual Duties'* are those duties that characterise the performance of the contract and on which the Yaskawa customer may reasonably rely. - (b) In each case, Yaskawa is not liable for (i) the slightly negligent breach of duties arising from the duties that are not *Essential Contractual Duties*, as well as (ii) force majeure, i.e. external events that have no operational connection and cannot be averted even by exercising the utmost care that can reasonably be expected. - (2) The aforementioned limitation of liability does not apply (i) in cases of mandatory statutory liability (in particular under the product liability law), (ii) if and to the extent that Yaskawa has assumed a guarantee or same as guaranteed procurement risk according to § 276 BGB, (iii) for culpably caused injuries to life, limb and/or health, also by representatives or vicarious agents, as well as (iv) in case of delay in the event of a fixed completion date. - (3) A reversal of the burden of proof is not associated with the provisions above. #### Disposal National rules and regulations apply to the disposal of the unit! Safety notes for the user ## 2 Basics and mounting ## 2.1 Safety notes for the user # A #### **DANGER** #### Protection against dangerous voltages - When using System SLIO modules, the user must be protected from touching hazardous voltage. - You must therefore create an insulation concept for your system that includes safe separation of the potential areas of extra-low voltage (ELV) and hazardous voltage. - Here, observe the insulation voltages between the potential areas specified for the System SLIO modules and take suitable measures, such as using PELV/SELV power supplies for System SLIO modules. ## Handling of electrostatic sensitive modules The modules are equipped with highly integrated components in MOS technology. These components are highly sensitive to over-voltages that occur, e.g. with electrostatic discharge. The following symbol is used to identify these hazardous modules: The symbol is located on modules, module racks or on packaging and thus indicates electrostatic sensitive modules. Electrostatic sensitive modules can be destroyed by energies and voltages that are far below the limits of human perception. If a person who is not electrically discharged handles electrostatic sensitive modules, voltages can occur and damage components and thus impair the functionality of the modules or render the modules unusable. Modules damaged in this way are in most cases not immediately recognized as faulty. The error can only appear after a long period of operation. Components damaged by static discharge can show temporary faults when exposed to temperature changes, vibrations or load changes. Only the consistent use of protective devices and responsible observance of the handling rules can effectively prevent malfunctions and failures on electrostatic sensitive modules. #### Shipping of modules Please always use the original packaging for shipping. #### Measurement and modification of electrostatic sensitive modules For measurements on electrostatic sensitive modules the following must be observed: - Floating measuring instruments must be discharged before use. - Measuring instruments used must be grounded. When modifying electrostatic sensitive modules, ensure that a grounded soldering iron is used. #### CAUTION When working with and on electrostatic sensitive modules, make sure that personnel and equipment are adequately grounded. System conception > Overview ## 2.2 System conception ## 2.2.1 Overview The System SLIO is a modular automation system for assembly on a 35mm profile rail. By means of the periphery modules with 2, 4, 8 and 16 channels this system may properly be adapted matching to your automation tasks. The wiring complexity is low, because the supply of the DC 24V power section supply is integrated to the backplane bus and defective modules may be replaced with standing wiring. By deployment of the power modules in contrasting colors within the system, further isolated areas may be defined for the DC 24V power section supply, respectively the electronic power supply may be extended with 2A. System conception > Components ## 2.2.2 Components - CPU (head module) - Bus coupler (head module) - Line extension - 8x periphery modules - 16x periphery modules - Power modules - Accessories #### CAUTION Only Yaskawa modules may be combined. A mixed operation with third-party modules is not allowed! #### CPU 01xC With the CPU 01xC electronic, input/output components and power supply are integrated to one casing. In addition, up to 64 periphery modules of the System SLIO can be connected to the backplane bus. As head module via the integrated power module for power supply CPU electronic and the I/O components are supplied as well as the electronic of the periphery modules, which are connected via backplane bus. To connect the power supply of the I/O components and for DC 24V power section supply of via backplane bus connected periphery modules, the CPU has removable connectors. By installing of up to 64 periphery modules at the backplane bus, these are electrically connected, this means these are assigned to the backplane bus, the electronic modules are power supplied and each periphery module is connected to the DC 24V power section supply. #### CPU 01x With this CPU 01x, CPU electronic and power supply are integrated to one casing. As head module, via the integrated power module for power supply, CPU electronic and the electronic of the connected periphery modules are supplied. The DC 24V power section supply for the linked periphery modules is established via a further connection of the power module. By installing of up to 64 periphery modules at the backplane bus, these
are electrically connected, this means these are assigned to the backplane bus, the electronic modules are power supplied and each periphery module is connected to the DC 24V power section supply. ## **CAUTION** CPU part and power module may not be separated! Here you may only exchange the electronic module! #### **Bus coupler** With a bus coupler bus interface and power module is integrated to one casing. With the bus interface you get access to a subordinated bus system. As head module, via the integrated power module for power supply, bus interface and the electronic of the connected periphery modules are supplied. The DC 24V power section supply for the linked periphery modules is established via a further connection of the power module. By installing of up to 64 periphery modules at the bus coupler, these are electrically connected, this means these are assigned to the backplane bus, the electronic modules are power supplied and each periphery module is connected to the DC 24V power section supply. #### CAUTION Bus interface and power module may not be separated! Here you may only exchange the electronic module! System conception > Components #### Line extension In the System SLIO there is the possibility to place up to 64 modules in on line. By means of the line extension you can divide this line into several lines. Here you have to place a line extension MainDevice at each end of a line and the subsequent line has to start with a line extension SubDevice. MainDevice and SubDevice are to be connected via a special connecting cable. In this way, you can divide a line on up to 5 lines. Depending on the line extension, the max. number of pluggable modules at the System SLIO bus is decreased accordingly. To use the line extension no special configuration is required. Please note that some modules do not support line extensions due to the system. For more information, please refer to the compatibility list. This can be found in the 'Download Center' of www.yaskawa.eu.com under 'System SLIO Compatibility list'. #### Periphery modules The periphery modules are available in the following 2 versions, whereby of each the electronic part can be replaced with standing wiring: - 8x periphery module for a maximum of 8 channels. - 16x periphery module for a maximum of 16 channels. #### 8x periphery modules Each 8x periphery module consists of a terminal and an electronic module. - 1 Terminal module - 2 Electronic module System conception > Components #### Terminal module The *terminal* module serves to carry the electronic module, contains the backplane bus with power supply for the electronic, the DC 24V power section supply and the staircase-shaped terminal for wiring. Additionally the terminal module has a locking system for fixing at a profile rail. By means of this locking system your system may be assembled outside of your switchgear cabinet to be later mounted there as whole system. #### Electronic module The functionality of a periphery module is defined by the *electronic module*, which is mounted to the terminal module by a sliding mechanism. With an error the defective electronic module may be exchanged for a functional module with standing installation. At the front side there are LEDs for status indication. For simple wiring each module shows corresponding connection information at the front and at the side. #### 16x periphery modules Each 16x periphery module consists of an electronic unit and a terminal block. - 1 Electronic unit - 2 Terminal block #### Electronic unit With the 16x periphery module the terminal block is connected to the *electronic unit* via a secure flap mechanism. In the case of an error you can exchange the defective electronic unit for a functional unit with standing wiring. At the front side there are LEDs for status indication. For easy wiring each electronic unit shows corresponding connection information at the side. The electronic unit provides the slot for the terminal block for the wiring and contains the backplane bus with power supply for the electronic and the connection to the DC 24V power section supply. Additionally the electronic unit has a locking system for fixing it at a profile rail. By means of this locking system your system may be assembled outside of your switchgear cabinet to be later mounted there as whole system. System conception > Accessories #### Terminal block The *terminal block* provides the electrical interface for the signalling and supplies lines of the module. When mounting the terminal block, it is attached to the bottom of the electronic unit and turned towards the electronic unit until it clicks into place. With the wiring a "push-in" spring-clip technique is used. This allows a quick and easy connection of your signal and supply lines. The clamping off takes place by means of a screwdriver. #### Power module In the System SLIO the power supply is established by power modules. These are either integrated to the head module or may be installed between the periphery modules. Depending on the power module isolated areas of the DC 24V power section supply may be defined respectively the electronic power supply may be extended with 2A. For better recognition the colour of the power modules are contrasting to the periphery modules. ### 2.2.3 Accessories #### Profile rail | Order no. | Description | |-----------|----------------------------------| | 290-1AF00 | 35 mm profile rail length 2000mm | | 290-1AF30 | 35 mm profile rail length 530mm | #### **NOTICE** #### To ensure EMC, the profile rail must be grounded! - Ensure that the profile rail is reliably and professionally grounded. - By mounting them on the grounded profile rail, the modules are automatically connected to the grounding system. 'Grounding guidelines'...page 21 'Installation guidelines'...page 45 #### Shield bus carrier Please note that a shield bus carrier cannot be mounted on a 16x periphery module! The shield bus carrier (order no.: 000-0AB00) serves to carry the shield bus (10mm x 3mm) to connect cable shields. Shield bus carriers, shield bus and shield fixings are not in the scope of delivery. They are only available as accessories. The shield bus carrier is mounted underneath the terminal of the terminal module. With a flat profile rail for adaptation to a flat profile rail you may remove the spacer of the shield bus carrier. System conception > Accessories #### Bus cover With each head module, to protect the backplane bus connectors, there is a mounted bus cover in the scope of delivery. You have to remove the bus cover of the head module before mounting a System SLIO module. For the protection of the backplane bus connector you always have to mount the bus cover at the last module of your system again. The bus cover has the order no. 000-0AA00. #### Coding pins Please note that a coding pin cannot be installed on a 16x periphery module! Here you have to make sure that the associated terminal block is plugged again when the electronics unit is replaced. There is the possibility to fix the assignment of electronic and terminal module. Here coding pins (order number 000-0AC00) can be used. The coding pin consists of a coding jack and a coding plug. By combining electronic and terminal module with coding pin, the coding jack remains in the electronic module and the coding plug in the terminal module. This ensures that after replacing the electronic module just another electronic module can be plugged with the same encoding. #### Spare parts The following spare parts are available for the System SLIO: | Spare part | Order no. | Description | Packaging unit | |------------|-----------|--|----------------| | | 092-9BH00 | Terminal block for System SLIO 16x periphery module. | 5 pieces | | | 092-9BK00 | Connector for System SLIO CPU 013C. | 5 pieces | #### CAUTION Please note that you may only use the spare parts with Yaskawa modules. Use with third-party modules is not allowed! Dimensions ### 2.2.4 Hardware revision ## Hardware revision on the front - The hardware revision is printed on every System SLIO module. - Since a System SLIO 8x periphery module consists of a terminal and electronic module, you will find a hardware revision printed on each of them. - Authoritative for the hardware revision of a System SLIO module is the hardware revision of the electronic module. This is located under the labeling strip of the corresponding electronic module. - Depending on the module type, there are the following 2 variants e.g. to indicate hardware revision 1: - With current labelling there is a 1 on the front. - With earlier labelling, the 1 is marked with 'X' on a number grid. Hardware revision via web server On the CPUs and some bus couplers, you can check the hardware revision 'HW Revision' via the integrated web server. ## 2.3 Dimensions ## CPU 01xC All dimensions are in mm. System SLIO Basics and mounting Dimensions CPU 01x Bus coupler and line extension SubDevice Line extension MainDevice Dimensions ## 8x periphery module ## Electronic module ## 16x periphery module Grounding concept > Shielding ## 2.4 Grounding concept #### Grounding guidelines For reliable grounding, ensure that all common ground connections and the functional earth (FE) of your System SLIO and all connected devices are connected to a central point and grounded there. #### **NOTICE** #### To ensure EMC, the profile rail must be grounded! - Ensure that the profile rail is reliably and professionally grounded. - By mounting them on the grounded profile rail, the modules are automatically connected to the grounding system. #### 'Installation guidelines'...page 45 - To avoid potential differences, use grounding cables that are as short as possible and have a large cross-section. - When selecting grounding points, observe the applicable safety regulations. - When assembling your components, ensure that the inactive metal parts are properly grounded over a large area. -
Connect all inactive metal parts over a large area and with low impedance. - Avoid using aluminium parts if possible. Aluminium is easily oxidizing and is therefore less suitable for grounding. ## 2.4.1 Shielding #### Overview Shielding is required for interference-free signal transmission. This weakens electrical, magnetic or electromagnetic interference fields. To attach the shield the mounting of shield bus carriers are necessary. The shield bus carrier (available as accessory) serves to carry the shield bus to connect cable shields. 'Installation guidelines'...page 45 - 1 Shield bus carrier - Shield bus (10mm x 3mm) - 3 Shield clamp - 4 Cable shield with metal foil - 5 Cable shield with wire mesh (close-meshed) - 6 Cable shield mounted with shield clamp Grounding concept > Shielding #### Shield attachment 1. System SLIO head and 8x periphery modules have a carrier hole for the shield bus carrier. Push the shield bus carrier, until they engage into the module. With a flat profile rail for adaptation to a flat profile rail you may remove the spacer of the shield bus carrier. 2. Put your shield bus into the shield bus carrier. - 3. Attach the cables with the accordingly stripped cable screen and fix it by the shield clamp with the shield bus. - 4. The shield bus must always be grounded. Keep all cable connections as short as possible. To ground the shield bus, connect a FE conductor to the shield bus via a shield clamp and screw it to the base plate as close as possible and with low impedance. - 1 Base plate - 2 FE conductor screwed to base plate System SLIO Basics and mounting Mounting 8x periphery modules ## 2.5 Mounting 8x periphery modules ## **CAUTION** ## Requirements for UL compliance use - Use for power supply exclusively SELV/PELV power supplies. - The System SLIO must be installed and operated in a housing according to IEC 61010-1 9.3.2 c). #### **CAUTION** #### Danger of injury from electrical shock and damage to the unit! Put the System SLIO in a safe, powered down state before starting installation, disassembly or wiring of the System SLIO modules! There is a locking lever at the top side of the module. For mounting and demounting this locking lever is to be turned upwards until this engages. For mounting place the module to the module installed before and push the module to the profile rail guided by the strips at the upper and lower side of the module. The module is fixed to the profile rail by pushing downward the locking lever. The modules may either separately be mounted to the profile rail or as block. Here is to be considered that each locking lever is opened. The modules are each installed on a profile rail. The electronic and power section supply are connected via the backplane bus. Up to 64 modules may be mounted. Please consider here that the sum current of the electronic power supply does not exceed the maximum value of 3A. By means of the power module 007-1AB10 the current of the electronic power supply may be expanded accordingly. ## Terminal and electronic module Each periphery module consists of a *terminal* and an *electronic module*. - 1 Terminal module - 2 Electronic module For the exchange of a electronic module, the electronic module may be pulled forward after pressing the unlocking lever at the lower side of the module. For installation plug the electronic module guided by the strips at the lower side until this engages audible to the terminal module. Mounting 8x periphery modules #### Coding There is the possibility to fix the assignment of electronic and terminal module. Here coding pins (order number 000-0AC00) can be used. The coding pin consists of a coding jack and a coding plug. By combining electronic and terminal module with coding pin, the coding jack remains in the electronic module and the coding plug in the terminal module. This ensures that after replacing the electronics module just another electronic module can be plugged with the same encoding. Each electronic module has on its back 2 coding sockets for coding jacks. Due to the characteristics, with the coding jack 6 different positions can be plugged, each. Thus there are 36 possible combinations for coding with the use of both coding sockets. - Plug, according to your coding, 2 coding jacks in the coding sockets of your electronic module until they lock - 2. Now plug the according coding plugs into the coding jacks. - 3. To fix the coding put both the electronic and terminal module together until they lock ## **CAUTION** Please consider that when replacing an already coded electronic module, this is always be replaced by an electronic module with the same coding. Even with an existing coding on the terminal module, you can plug an electronic module without coding. The user is responsible for the correct usage of the coding pins. Yaskawa assumes no liability for incorrectly attached electronic modules or for damages which arise due to incorrect coding! Mounting 8x periphery modules #### Mounting periphery modules - 1. Mount the profile rail. Please consider that a clearance from the middle of the profile rail of at least 80mm above and 60mm below, respectively 80mm by deployment of shield bus carriers, exist. - 2. Mount your head module such as CPU or field bus coupler. - **3.** Before mounting the periphery modules you have to remove the bus cover at the right side of the head module by pulling it forward. Keep the cover for later mounting. - **4.** For mounting turn the locking lever of the module upwards until it engages. - **5.** For mounting place the module to the module installed before and push the module to the profile rail guided by the strips at the upper and lower side of the module. - **6.** Turn the locking lever of the periphery module downward, again. Mounting 16x periphery modules After mounting the whole system, to protect the backplane bus connectors at the last module you have to mount the bus cover, now. If the last module is a clamp module, for adaptation the upper part of the bus cover is to be removed. ## 2.6 Mounting 16x periphery modules #### **CAUTION** #### Requirements for UL compliance use - Use for power supply exclusively SELV/PELV power supplies. - The System SLIO must be installed and operated in a housing according to IEC 61010-1 9.3.2 c). #### **CAUTION** #### Danger of injury from electrical shock and damage to the unit! Put the System SLIO in a safe, powered down state before starting installation, disassembly or wiring of the System SLIO modules! There is a locking lever at the top side of the module. For mounting and demounting this locking lever is to be turned upwards until this engages. For mounting place the module to the module installed before and push the module to the profile rail guided by the strips at the upper and lower side of the module. The module is fixed to the profile rail by pushing downward the locking lever. The modules may either separately be mounted to the profile rail or as block. Here is to be considered that each locking lever is opened. The modules are each installed on a profile rail. The electronic and power section supply are connected via the backplane bus. Up to 64 modules may be mounted. Please consider here that the sum current of the electronic power supply does not exceed the maximum value of 3A. By means of the power module 007-1AB10 the current of the electronic power supply may be expanded accordingly. System SLIO Basics and mounting Mounting 16x periphery modules ## Electronic unit and terminal block - 1 Electronic unit - 2 Terminal block To replace an electronic unit, you can push down and pull off the terminal block after releasing the lock. To mount the terminal block, place it horizontally on the lower side of the electronic unit and push it towards the electronic unit until it clicks into place. Mounting 16x periphery modules #### Mounting periphery module - 1. Mount the profile rail. Please consider that a clearance from the middle of the profile rail of at least 80mm above and 80mm below exist. - 2. Mount your head module such as CPU or field bus coupler. - Before mounting the periphery modules you have to remove the bus cover at the right side of the head module by pulling it forward. Keep the cover for later mounting. - **5.** For mounting place the module to the module installed before and push the module to the profile rail guided by the strips at the upper and lower side of the module. - **6.** ▶ Turn the locking lever of the periphery module downward, again. Wiring 8x periphery modules After mounting the whole system, to protect the backplane bus connectors at the last module you have to mount the bus cover, now. If the last module is a clamp module, for adaptation the upper part of the bus cover is to be removed. ## 2.7 Wiring 8x periphery modules #### Terminal module terminals #### CAUTION ## Do not connect hazardous voltages! If this is not explicitly stated in the corresponding module description, hazardous voltages are not allowed to be connected to the corresponding terminal module! #### **CAUTION** #### Danger of injury from electrical shock and damage to the unit! Put the System SLIO in a safe, powered down state before starting installation, disassembly or wiring of the System SLIO modules! #### **CAUTION** #### Consider temperature for external cables! Cables may experience temperature increase due to system heat dissipation. Thus the cabling specification must be chosen 25°C above ambient temperature! With wiring the terminal modules, terminals with spring clamp technology are used for wiring. The spring clamp technology allows quick and easy connection of your signal and supply lines. In contrast to screw terminal connections this type of connection is vibration proof. #### Data Please use copper wire only! U_{max} 240V AC / 30V DC I_{max} 10A Cross section 0.08 ... 1.5mm² (AWG 28 ... 16) Stripping length 10mm Wiring 16x periphery modules #### Wiring procedure - 1 Pin number at the connector
- 2 Opening for screwdriver - 3 Connection hole for wire - 1. Insert a suited screwdriver at an angel into the square opening as shown. Press and hold the screwdriver in the opposite direction to open the contact spring. - Insert the stripped end of wire into the round opening. You can use wires with a cross section of 0.08mm² up to 1.5mm² - **3.** By removing the screwdriver, the wire is securely fixed via the spring contact to the terminal. Shield attachment 'Shielding'...page 21 ## 2.8 Wiring 16x periphery modules #### Terminal block connectors #### CAUTION #### Do not connect hazardous voltages! If this is not explicitly stated in the corresponding module description, hazardous voltages are not allowed to be connected to the corresponding terminal block! ### **CAUTION** #### Danger of injury from electrical shock and damage to the unit! Put the System SLIO in a safe, powered down state before starting installation, disassembly or wiring of the System SLIO modules! ## **CAUTION** ## Consider temperature for external cables! Cables may experience temperature increase due to system heat dissipation. Thus the cabling specification must be chosen 25°C above ambient temperature! - The 16x periphery module has a removable terminal block for wiring. - With the wiring of the terminal block a "push-in" spring-clip technique is used. This allows a quick and easy connection of your signal and supply lines. - The clamping off takes place by means of a screwdriver. Wiring power modules #### Data Please use copper wire only! $\begin{array}{cc} U_{\text{max}} & 30 \text{V DC} \\ I_{\text{max}} & 10 \text{A} \end{array}$ Cross section solid wire 0.25 ... 0.75mm² Cross section with ferrule 0.14 ... 0.75mm² AWG 24 ... 16 Stripping length 10mm ## Wiring procedure #### Insert wire 1 Release area 2 Connection hole for wire The wiring happens without a tool. - 1. Determine according to the casing labelling the connection position. - **2.** Insert through the round connection hole of the according contact your prepared wire until it stops, so that it is fixed. - → By pushing the contact spring opens, thus ensuring the necessary contact pressure. #### Remove wire The wire is to be removed by means of a screwdriver with 2.5mm blade width. - 1. Press with your screwdriver vertically at the release button. - ➡ The contact spring releases the wire. - 2. Pull the wire from the round hole. ## 2.9 Wiring power modules #### Terminal module terminals Power modules are either integrated to the head module or may be installed between the periphery modules. With power modules, terminals with spring clamp technology are used for wiring. The spring clamp technology allows quick and easy connection of your signal and supply lines. In contrast to screw terminal connections this type of connection is vibration proof. ## Data Please use copper wire only! U_{max} 30V DC I_{max} 10A Cross section 0.08 ... 1.5mm² (AWG 28 ... 16) Stripping length 10mm Wiring power modules #### Wiring procedure - 1 Pin number at the connector - 2 Opening for screwdriver - 3 Connection hole for wire #### CAUTION ## Danger of injury from electrical shock and damage to the unit! Put the System SLIO in a safe, powered down state before starting installation, disassembly or wiring of the System SLIO modules! #### CAUTION #### Consider temperature for external cables! Cables may experience temperature increase due to system heat dissipation. Thus the cabling specification must be chosen 25°C above ambient temperature! - 1. Insert a suited screwdriver at an angel into the square opening as shown. Press and hold the screwdriver in the opposite direction to open the contact spring. - Insert the stripped end of wire into the round opening. You can use wires with a cross section of 0.08mm² up to 1.5mm² - By removing the screwdriver, the wire is securely fixed via the spring contact to the terminal. Shield attachment 'Shielding'...page 21 Wiring power modules #### Standard wiring - (1) DC 24V for power section supply I/O area (max. 10A) - (2) DC 24V for electronic power supply bus coupler and I/O area PM - Power module For wires with a core cross-section of 0.08mm² up to 1.5mm². | Pos. | Function | Туре | Description | |------|------------|------|------------------------------------| | 1 | | | not connected | | 2 | DC 24V | I | DC 24V for power section supply | | 3 | 0V | I | GND for power section supply | | 4 | Sys DC 24V | I | DC 24V for electronic power supply | | 5 | | | not connected | | 6 | DC 24V | I | DC 24V for power section supply | | 7 | 0V | I | GND for power section supply | | 8 | Sys 0V | I | GND for electronic power supply | I: Input ## **CAUTION** Since the power section supply is not internally protected, it is to be externally protected with a fuse, which corresponds to the maximum current. This means max. 10A is to be protected by a 10A fuse (fast) respectively by a line circuit breaker 10A characteristics Z and should be UL approved! The electronic power section supply is internally protected against higher voltage by fuse. The fuse is within the power module. If the fuse releases, its electronic module must be exchanged! Wiring power modules #### **Fusing** ■ The power section supply is to be externally protected with a fuse, which corresponds to the maximum current. This means max. 10A is to be protected with a 10A fuse (fast) respectively by a line circuit breaker 10A characteristics Z and should be UL approved. - For modules with positive logic (PNP), place the fuse on the positive connector. - For modules with negative logic (NPN), place the fuse on the negative connector. - For mixed logic, one fuse must be placed on the negative and one on the positive connector. - It is recommended to externally protect the electronic power supply for head modules and I/O area with a 2A fuse (fast) respectively by a line circuit breaker 2A characteristics Z and should be UL approved. - The electronic power supply for the I/O area of the power module 007-1AB10 should also be externally protected with a 1A fuse (fast) respectively by a line circuit breaker 1A characteristics Z and should be UL approved. ## State of the electronic power supply via LEDs After PowerON of the System SLIO the LEDs RUN respectively MF get on so far as the sum current does not exceed 3A. With a sum current greater than 3A the LEDs may not be activated. Here the power module with the order number 007-1AB10 is to be placed between the peripheral modules. ## Deployment of the power modules - If the 10A for the power section supply is no longer sufficient, you may use the power module with the order number 007-1AB00. So you have also the possibility to define isolated groups. - The power module with the order number 007-1AB10 is to be used if the 3A for the electronic power supply at the backplane bus is no longer sufficient. Additionally you get an isolated group for the DC 24V power section supply with max. 4A. - By placing the power module 007-1AB10 at the following backplane bus modules may be placed with a sum current of max. 2A. Afterwards a power module is to be placed again. To secure the power supply, the power modules may be mixed used. #### Power module 007-1AB00 System SLIO **Basics and mounting** Demounting 8x periphery modules #### Power module 007-1AB10 - (1) DC 24V for power section supply I/O area (max. 10A) - (2) DC 24V for electronic power supply bus coupler and I/O area(3) DC 24V for power section supply I/O area (max. 4A) - (4) DC 24V for electronic power supply I/O area #### 2.10 Demounting 8x periphery modules #### **Proceeding** Exchange of an electronic module #### CAUTION Put the System SLIO in a safe, powered down state before starting disassembly! 1. Power-off your system. - 2. For the exchange of a electronic module, the electronic module may be pulled forward after pressing the unlocking lever at the lower side of the module. - 3. For installation plug the new electronic module guided by the strips at the lower side until this engages to the terminal module. - Now you can bring your system back into operation. #### Easy Maintenance 'Easy Maintenance' means the support for adding and removing electronic modules during operation without having to restart the system. If this is supported by your head module, you will find more detailed information on this in the "Deployment" chapter. 'Easy Maintenance'...page 41 Demounting 8x periphery modules #### Exchange of a periphery module - 1. Power-off your system. - 2. Remove if exists the wiring of the module. For demounting and exchange of a (head) module or a group of modules, due to mounting reasons you always have to remove the electronic module right beside. After mounting it may be plugged again. Press the unlocking lever at the lower side of the just mounted right module and pull it forward. **4.** Turn the locking lever of the module to be exchanged upwards. - **5.** Pull the module. - **6.** For mounting turn the locking lever of the module to be mounted upwards. - 7. To mount the module put it to the gap between the both modules and push it, guided by the stripes at both sides, to the profile rail. - **8.** Turn the locking lever downward, again. - **9.** Plug again the electronic module, which you have removed before. - **10.** ▶ Wire your module. - Now you can bring your system back into operation. Demounting 8x periphery modules # Exchange of a module group **2.** Remove if exists the wiring of the module group. For demounting and exchange of a (head) module or a group of modules, due to mounting reasons you always have to remove the electronic module <u>right</u> beside. After mounting it may be plugged again. Press the unlocking lever at the lower side of the just mounted right module near the module group and pull it forward. **4.** Turn all the locking lever of the module group to be exchanged upwards. - 7. To mount the module group put it to the gap between the both modules and push it, guided
by the stripes at both sides, to the profile rail. - 8. Turn all the locking lever downward, again. - 9. Plug again the electronic module, which you have removed before. - **10.** ▶ Wire your module group. - ▶ Now you can bring your system back into operation. Basics and mounting System SLIO Demounting 16x periphery modules # 2.11 Demounting 16x periphery modules # Proceeding Exchange of an electronic unit #### CAUTION Put the System SLIO in a safe, powered down state before starting disassembly! - 1. Power-off your system. - **2.** To replace an electronic unit, you can push down and pull off the terminal block after releasing the lock. To mount the terminal block, place it horizontally on the lower side of the electronic unit and push it towards the electronic unit until it clicks into place. → Now you can bring your system back into operation. # Exchange of a 16x periphery module - 1. Power-off your system. - 2. Remove if exists the wiring of the module respectively the wired terminal block. - 3. ▶ In contrast to 8x periphery modules, you can directly demount and mount 16x periphery modules. Turn the locking lever of the module to be exchanged upwards. Demounting 16x periphery modules - **4.** Pull the module. - **5.** For mounting turn the locking lever of the module to be mounted upwards. **6.** To mount the module put it to the gap between the both modules and push it, guided by the stripes at both sides, to the profile rail. - 7. Turn the locking lever downward, again. - **8.** Wire your module respectively plug the wired terminal block again. - Now you can bring your system back into operation. - 1. Power-off your system. - **2.** Remove if exists the wiring of the module group respectively the wired terminal blocks. In contrast to 8x periphery modules, you can directly demount and mount 16x periphery modules. Turn all the locking lever of the module group to be exchanged upwards. Basics and mounting System SLIO Demounting 16x periphery modules - **4.** Pull the module group forward. - **5.** For mounting turn all the locking lever of the module group to be mounted upwards. **6.** To mount the module group put it to the gap between the both modules and push it, guided by the stripes at both sides, to the profile rail. - 7. Turn all the locking lever downward, again. - **8.** Wire your module group respectively plug the wired terminal blocks again. - ▶ Now you can bring your system back into operation. Easy Maintenance # 2.12 Easy Maintenance #### Overview - 1 Terminal module - 2 Electronic module Easy Maintenance means the support for adding and removing an electronic module during operation without having to restart the system. Here the following behavior is shown by the example of a CPU: - Electronic module is removed - The CPU detects a module failure on the backplane bus. - Diagnostic message 'System SLIO bus failure' (0x39D0) is triggered. - OB 86 is called. If this is not available, the CPU switches to STOP otherwise it remains in RUN. - The SF LED of the CPU lights up. - The I/O data of all modules become invalid. - Identical electronic module is plugged - The CPU detects the module return on the backplane bus. - The SF-LED of the CPU gets off. - All RUN LEDs on the modules get on and the MF LEDs get off. - Diagnostic message 'System SLIO bus recovery' (0x38D0) is triggered. - OB 86 is called. If this is not available, the CPU switches to STOP otherwise it remains in RUN. - The I/O data of all modules become valid again. - Wrong electronic module is plugged - The CPU detects the wrong module. - Diagnostic message 'System SLIO bus recovery, but expected configuration does not match actual configuration' (0x38D1) is triggered. - The SF LED of the CPU remains on. - The MF LED of the wrong module flashes. - OB 86 is called. If this is not available, the CPU switches to STOP otherwise it remains in RUN. - With the exception of the wrong module, the I/O data of all modules become valid again. #### CAUTION Please note that only electronic modules may be exchanged during operation! Replacing an 8x or 16x periphery module during operation can damage the module and the system! Please note that the CPU switches to STOP, if there is no OB 86 configured when adding or removing System SLIO modules! Basics and mounting System SLIO Trouble shooting - LEDs # 2.13 Trouble shooting - LEDs #### General Each module has the LEDs RUN and MF on its front side. Errors or incorrect modules may be located by means of these LEDs. In the following illustrations flashing LEDs are marked by 🌣. # Sum current of the electronic power supply exceeded Behavior: After PowerON the RUN LED of each module is off and the MF LED of each module is sporadically on. *Reason*: The maximum current for the electronic power supply is exceeded. Remedy: As soon as the sum current of the electronic power supply is exceeded, always place the power module 007-1AB10. 'Wiring power modules'...page 31 #### Error in configuration *Behavior*: After PowerON the MF LED of one module respectively more modules flashes. The RUN LED remains off. *Reason*: At this position a module is placed, which does not correspond to the configured module. Remedy: Match configuration and hardware structure. #### Module failure *Behavior*: After PowerON all of the RUN LEDs up to the defective module are flashing. With all following modules the MF LED is on and the RUN LED is off. Reason: The module on the right of the flashing modules is defective. Remedy: Replace the defective module. System SLIO Basics and mounting Industrial security and installation guidelines > Industrial security in information technology # 2.14 Industrial security and installation guidelines # 2.14.1 Industrial security in information technology #### Latest version This chapter can also be found as a guide 'Industrial IT Security' in the 'Download Center' of www.yaskawa.eu.com #### Hazards The topic of data security and access protection has become increasingly important in the industrial environment. The increased networking of entire industrial systems to the network levels within the company together with the functions of remote maintenance have all served to increase vulnerability. Hazards can arise from: - Internal manipulation such as technical errors, operating and program errors and deliberate program or data manipulation. - External manipulation such as software viruses, worms and trojans. - Human carelessness such as password phishing. #### **Precautions** The most important precautions to prevent manipulation and loss of data security in the industrial environment are: - Encrypting the data traffic by means of certificates. - Filtering and inspection of the traffic by means of VPN "Virtual Private Networks". - Identification of the user by "Authentication" via save channels. - Segmenting in protected automation cells, so that only devices in the same group can exchange data. - Deactivation of unnecessary hardware and software. #### **Further Information** You can find more information about the measures on the following websites: - Federal Office for Information Technology → www.bsi.bund.de - Cybersecurity & Infrastructure Security Agency → us-cert.cisa.gov - VDI / VDE Society for Measurement and Automation Technology → www.vdi.de Basics and mounting System SLIO Industrial security and installation guidelines > Industrial security in information technology #### 2.14.1.1 Protection of hardware and applications #### **Precautions** - Do not integrate any components or systems into public networks. - Use VPN "Virtual Private Networks" for use in public networks. This allows you to control and filter the data traffic accordingly. - Always keep your system up-to-date. - Always use the latest firmware version for all devices. - Update your user software regularly. - Protect your systems with a firewall. - The firewall protects your infrastructure internally and externally. - This allows you to segment your network and isolate entire areas. - Secure access to your plants via user accounts. - If possible, use a central user management system. - Create a user account for each user for whom authorization is essential. - Always keep user accounts up-to-date and deactivate unused user accounts. - Secure access to your plants via secure passwords. - Change the password of a standard login after the first start. - Use strong passwords consisting of upper/lower case, numbers and special characters. The use of a password generator or manager is recommended. - Change the passwords according to the rules and guidelines that apply to your application. - Deactivate inactive communication ports respectively protocols. - Only the communication ports that are used for communication should be activated. - Only the communication protocols that are used for communication should be activated. - Consider possible defence strategies when planning and securing the system. - The isolation of components alone is not sufficient for comprehensive protection. An overall concept is to be drawn up here, which also provides defensive measures in the event of a cyber attack. - Periodically carry out threat assessments. Among others, a comparison is made here between the protective measures taken and those required. - Limit the use of external storage media. - Via external storage media such as USB memory sticks or SD memory cards, malware can get directly into a system while bypassing a firewall. - External storage media or their slots must be protected against unauthorized physical access, e.g. by using a lockable control cabinet. - Make sure that only authorized persons have access. - When disposing of storage media, make sure that they are safely destroyed. - Use secure access paths such as HTTPS or VPN for remote access to your plant. - Enable security-related event logging in accordance with the applicable security policy and legal requirements for data protection. System SLIO Basics and mounting Industrial security and
installation guidelines > Installation guidelines #### 2.14.1.2 Protection of PC-based software #### **Precautions** Since PC-based software is used for programming, configuration and monitoring, it can also be used to manipulate entire systems or individual components. Particular caution is required here! - Use user accounts on your PC systems. - If possible, use a central user management system. - Create a user account for each user for whom authorization is essential. - Always keep user accounts up-to-date and deactivate unused user accounts. - Protect your PC systems with secure passwords. - Change the password of a standard login after the first start. - Use strong passwords consisting of upper/lower case, numbers and special characters. The use of a password generator or manager is recommended. - Change the passwords according to the rules and guidelines that apply to your application. - Enable security-related event logging in accordance with the applicable security policy and legal requirements for data protection. - Protect your PC systems by security software. - Install virus scanners on your PC systems to identify viruses, trojans and other malware. - Install software that can detect phishing attacks and actively prevent them. - Always keep your software up-to-date. - Update your operating system regularly. - Update your software regularly. - Make regular backups and store the media at a safe place. - Regularly restart your PC systems. Only boot from storage media that are protected against manipulation. - Use encryption systems on your storage media. - Perform security assessments regularly to reduce the risk of manipulation. - Use only data and software from approved sources. - Uninstall software which is not used. - Disable unused services. - Activate a password-protected screen lock on your PC systems. - Always lock your PC systems as soon as you leave your PC workstation. - Do not click any links that come from unknown sources. If necessary ask, e.g. on e-mails. - Use secure access paths such as HTTPS or VPN for remote access to your PC system. ## 2.14.2 Installation guidelines ## General The installation guidelines contain information about the interference free deployment of a PLC system. There is the description of the ways, interference may occur in your PLC, how you can make sure the electromagnetic compatibility (EMC), and how you manage the isolation. #### What does EMC mean? Electromagnetic compatibility (EMC) means the ability of an electrical device, to function error free in an electromagnetic environment without being interfered respectively without interfering the environment. The components are developed for the deployment in industrial environments and meets high demands on the EMC. Nevertheless you should project an EMC planning before installing the components and take conceivable interference causes into account. Basics and mounting System SLIO Industrial security and installation guidelines > Installation guidelines # Possible interference causes Electromagnetic interferences may interfere your control via different ways: - Electromagnetic fields (RF coupling) - Magnetic fields with power frequency - Bus system - Power supply - Protected ground conductor Depending on the spreading medium (lead bound or lead free) and the distance to the interference cause, interferences to your control occur by means of different coupling mechanisms. #### There are: - galvanic coupling - capacitive coupling - inductive coupling - radiant coupling #### Basic rules for EMC In the most times it is enough to take care of some elementary rules to guarantee the EMC. Please regard the following basic rules when installing your PLC. - Take care of a correct area-wide grounding of the inactive metal parts when installing your components. - Connect all inactive metal extensive and impedance-low. - Please try not to use aluminium parts. Aluminium is easily oxidizing and is therefore less suitable for grounding. - When cabling, take care of the correct line routing. - Organize your cabling in line groups (high voltage, current supply, signal and data lines). - Always lay your high voltage lines and signal respectively data lines in separate channels or bundles. - Route the signal and data lines as near as possible beside ground areas (e.g. suspension bars, metal rails, tin cabinet). - Proof the correct fixing of the lead isolation. - Data lines must be shielded. - Analog lines must be shielded. When transmitting signals with small amplitudes the one sided laying of the isolation may be favourable. - Cables for frequency inverters, servo and stepper motors must be shielded. - Lay the line isolation extensively on an isolation/protected ground conductor rail directly after the cabinet entry and fix the isolation with cable clamps. - Make sure that the isolation/protected ground conductor rail is connected impedance-low with the cabinet. - Use metallic or metallised plug cases for isolated data lines. - In special use cases you should appoint special EMC actions. - Consider to wire all inductivities with erase links. - Please consider luminescent lamps can influence signal lines. - Create a homogeneous reference potential and ground all electrical operating supplies when possible. - Please take care for the targeted employment of the grounding actions. The grounding of the PLC serves for protection and functionality activity. - Connect installation parts and cabinets with your PLC in star topology with the isolation/protected ground conductor system. So you avoid ground loops. - If there are potential differences between installation parts and cabinets, lay sufficiently dimensioned potential compensation lines. General data for the System SLIO #### Isolation of conductors Electrical, magnetically and electromagnetic interference fields are weakened by means of an isolation, one talks of absorption. Via the isolation rail, that is connected conductive with the rack, interference currents are shunt via cable isolation to the ground. Here you have to make sure, that the connection to the protected ground conductor is impedancelow, because otherwise the interference currents may appear as interference cause. When isolating cables you have to regard the following: - If possible, use only cables with isolation tangle. - The hiding power of the isolation should be higher than 80%. - Normally you should always lay the isolation of cables on both sides. Only by means of the both-sided connection of the isolation you achieve high quality interference suppression in the higher frequency area. Only as exception you may also lay the isolation one-sided. Then you only achieve the absorption of the lower frequencies. A one-sided isolation connection may be convenient, if: - the conduction of a potential compensating line is not possible. - analog signals (some mV respectively μA) are transferred. - foil isolations (static isolations) are used. - With data lines always use metallic or metallised plugs for serial couplings. Fix the isolation of the data line at the plug rack. Do not lay the isolation on the PIN 1 of the plug bar! - At stationary operation it is convenient to strip the insulated cable interruption free and lay it on the isolation/protected ground conductor line. - To fix the isolation tangles use cable clamps out of metal. The clamps must clasp the isolation extensively and have well contact. - Lay the isolation on an isolation rail directly after the entry of the cable in the cabinet. #### CAUTION #### Please regard at installation! At potential differences between the grounding points, there may be a compensation current via the isolation connected at both sides. Remedy: Potential compensation line # 2.15 General data for the System SLIO | Conformity and approval | | | |-------------------------|---------------|---| | Conformity | | | | CE | 2014/35/EU | Low Voltage Directive | | | 2014/30/EU | EMC Directive | | RoHS (EU) | 2011/65/EU | Restriction of the use of certain hazardous substances in electrical and electronic equipment | | UKCA | 2016 No. 1101 | Electrical Equipment (Safety) Regulations | | | 2016 No. 1091 | Electromagnetic Compatibility Regulations | | RoHS (UK) | 2012 No. 3032 | Use of Certain Hazardous Substances | | Approval | | | | Certifications | - | Refer to technical data | Basics and mounting System SLIO General data for the System SLIO | Protection of persons and device protection | | | |---|---|-----------------------------------| | Type of protection | - | IP20 | | Electrical isolation | | | | to the field bus | - | electrically isolated | | to the process level | - | electrically isolated | | Insulation resistance | - | - | | Insulation voltage to reference ground | | | | Inputs / outputs | - | AC / DC 50V, test voltage AC 500V | | Protective measures | - | against short circuit | | Environmental conditions to EN 61131-2 | | | | |--|---------------|---|--| | Operation | | | | | Horizontal installation hanging | EN 61131-2 | 0+60°C | | | Horizontal installation lying | EN 61131-2 | 0+55°C | | | Vertical installation | EN 61131-2 | 0+50°C | | | Air humidity | EN 60068-2-30 | RH1 (without condensation, rel. humidity 1095%) | | | Pollution | EN 61131-2 | Degree of pollution 2 | | | Installation altitude max. | - | 2000m | | | Mechanical | | | | | Oscillation | EN 60068-2-6 | 1g, 9Hz 150Hz | | | Shock | EN 60068-2-27 | 15g, 11ms | | | Mounting conditions | | | |---------------------|---|-------------------------| | Mounting place | - | In the control cabinet | | Mounting position | - | Horizontal and vertical | System SLIO Basics and mounting General data for the System SLIO > Use in difficult operating conditions | EMC | Standard | | Comment |
--|--------------|--------------|---| | Emitted interference | EN 61000-6-4 | | Class A (Industrial area) | | Noise immunity | EN 61000-6-2 | | Industrial area | | zone B | | EN 61000-4-2 | ESD | | | | | 8kV at air discharge (degree of severity 3), | | | | | 4kV at contact discharge (degree of severity 2) | | | | EN 61000-4-3 | HF field immunity (casing) | | | | | 80MHz 1000MHz, 10V/m, 80% AM (1kHz) | | | | | 1.4GHz 6GHz, 3V/m, 80% AM (1kHz) | | | | EN 61000-4-6 | HF conducted | | | | | 150kHz 80MHz, 10V, 80% AM (1kHz) | | | | EN 61000-4-4 | Burst | | | | EN 61000-4-5 | Surge ¹ | | 1) Due to the high-energetic single pulses with Surge an appropriate external protective circuit with lightning protection elements like conductors for lightning and overvoltage is | | | | ¹⁾ Due to the high-energetic single pulses with Surge an appropriate external protective circuit with lightning protection elements like conductors for lightning and overvoltage is necessary. # 2.15.1 Use in difficult operating conditions Without additional protective measures, the products must not be used in locations with difficult operating conditions; e.g. due to: - dust generation - chemically active substances (corrosive vapors or gases) - strong electric or magnetic fields Hardware description System SLIO Properties # 3 Hardware description # 3.1 Properties ## 054-1CB00 The FM 054-1CB00 is a motion module for controlling 2 axis drive with DC motor. It can be used for point-to-point positioning and for complex drive profiles with the highest demands on precision, dynamics and speed. - DC motor module for controlling 2 axis - 4 inputs/outputs DC 24V, which can be used as encoder inputs - PWM clock speed 32kHz 0 ## Compatibility list An overview of CPU and bus coupler, which support the 054-1CB00, can be found at → www.yaskawa.eu.com at the download area of the System SLIO manuals. # Ordering data | Туре | Order number | Description | |-------------|--------------|---| | FM 054 2xDC | 054-1CB00 | System SLIO 2x DC motor module, DC 24V, 1.5A | | | | 2 channels with feedback, 4 inputs/outputs DC 24V | Hardware description Structure # 3.2 Structure #### 054-1CB00 - 1 Locking lever terminal module - 2 Labeling strip - 3 Backplane bus - 4 LED status indication - 5 DC 24V power section supply - 6 Electronic module - 7 Terminal module - 8 Locking lever electronic module - 9 Terminal #### **Connections** ## **CAUTION** # Danger of injury from electrical shock and damage to the unit! Put the System SLIO in a safe, powered down state before starting installation, disassembly or wiring of the System SLIO modules! You can use wires with a cross section of 0.08mm² up to 1.5mm². For the connection lines the following requirements apply: - For the digital I/O connection with DIO operation single lines can be used. In encoder mode, shielded cables are to be used. - A motor must be connected via shielded lines. - Generally, power and signal lines must be laid separately. Hardware description System SLIO Structure | Pos. | Function | Туре | Description | |------|----------|------|---------------------------| | 1 | PA1 | 0 | DC Motor 1 - connection 1 | | 2 | PA2 | 0 | DC Motor 1 - connection 2 | | 3 | I/O1 | I/O | Digital input/output 1 | | 4 | I/O3 | I/O | Digital input/output 3 | | 5 | PB1 | 0 | DC Motor 2 - connection 1 | | 6 | PB2 | 0 | DC Motor 2 - connection 2 | | 7 | I/O2 | I/O | Digital input/output 2 | | 8 | I/O4 | I/O | Digital input/output 4 | | | | | | I: Input, O: Output 0 ## Power supply The module is to be power supplied with the both DC 24V voltages power section supply I/O area and electronic power supply. When commissioning these may simultaneously or electronic power supply must be switched on first. When commissioning these may simultaneously or power section supply I/O area must be switched on first. 'Standard wiring'...page 33 #### Connecting an encoder There is the possibility to connect an encoder via I/O1 and I/O3 respectively via I/O2 and I/O4. Current values of position, velocity, acceleration and deceleration are calculated by the System SLIO motion module itself. If there is no more encoder connected, the unused digital in-/outputs are further free for usage. Encoder mode: 24V HTL signal Phase A and B 100 kHz 4-fold evaluation | Pos. | Function | Туре | Description | |-----------|-----------|------|--------------------------| | 3 | I/O1 | I | Encoder function drive 1 | | 4 | I/O3 | I | Encoder function drive 1 | | 7 | I/O2 | I | Encoder function drive 2 | | 8 | I/O4 | I | Encoder function drive 2 | | I: Input, | O: Output | | | 'Encoder - deployment'...page 94 Structure # Status indication | RUN | MF | Description | on | | |---------------|-------|-------------|--|--| | green | red | | | | | | | | | | | | | Bus com | munication is OK | | | _ | | Module s | tatus is OK | | | | | | munication is OK | | | | _ | | tatus reports an error | | | | | | munication is not possible | | | | | | tatus reports an error | | | | | | ous power supply | | | X | | Error in c | configuration 'Trouble shooting - LEDs'page 42 | | | | | | The state of drive 1 is becomed (Outtober dear) and | | | | green | | The state of drive 1 is beyond 'Switched on' and 'Operation enabled' 'States'page 67 | | | PWRA | 9.00 | | Drive 1 is in state 'Switched on' | | | | _ | | Drive 1 is in state 'Operation enabled' | | | | green | | The state of drive 2 is beyond 'Switched on' and 'Operation enabled' 'States'page 67 | | | PWRB | | | Drive 2 is in state 'Switched on' | | | | | | Drive 2 is in state 'Operation enabled' | | | | | | No error drive 1 | | | ERRA | red | | Warning drive 1: 0x80 in '0x8100-02 - Status word'page 121 | | | | - | | Error drive 1: 0x08 in '0x8100-02 - Status word'page 121 | | | | | | No error drive 2 | | | ERRB | red | | Warning drive 2: 0x80 in '0x8100-02 - Status word'page 121 | | | | _ | | Error drive 2: 0x08 in '0x8100-02 - Status word'page 121 | | | I/O1 | green | | Digital input/output 1 has "0" signal | | | 1/01 | | | Digital input/output 1 has "1" signal | | | 1/02 | green | | Digital input/output 2 has "0" signal | | | 1/02 | | | Digital input/output 2 has "1" signal | | | I/O3 | green | | Digital input/output 3 has "0" signal | | | 1/03 | | | Digital input/output 3 has "1" signal | | | 1/04 | green | | Digital input/output 4 has "0" signal | | | 1/04 | | | Digital input/output 4 has "1" signal | | | not relevant: | X | | | | Hardware description System SLIO Block diagram # 3.3 Block diagram #### Structure #### Voltages U_{Sys} - DC 24V electronic section supply Power supply for electronic and back plane bus communication U_{IN} - DC 24V power section supply Power supply for the I/O area Area: DC 20.4 ... 28.8V U_D - DC 10V driver supply The power supply is built via U_{IN} via a DC-DC converter and enabled via the μ -controller. U_C - DC 3.3V μ -controller supply The power supply is built via U_{IN} via a DC-DC converter. ON: Edge 0-1 at 16V from U_{IN} OFF: Edge 1-0 at 14V from U_{IN} $\mathsf{U}_\mathsf{M}\;$ - Motor power supply ON: Edge 0-1 at 19.2V from U_{IN} OFF: Edge 1-0 at 18.5V from U_{IN} #### Temperature monitoring The motion module has an internal temperature monitoring of the μ -controller and the power stage. Via the object dictionary limit temperatures can be defined. If the temperature over or under runs the limit values, there is an error reaction of the motion module, which can be configured. Technical data # 3.4 Technical data | Order no. | 054-1CB00 | |---|------------------------| | Туре | FM 054 - Motion module | | Module ID | 0982 6800 | | Current consumption/power loss | | | Current consumption from backplane bus | 50 mA | | Power loss | 1 W | | Technical data digital inputs | | | Number of inputs | 4 | | Cable length, shielded | 1000 m | | Cable length, unshielded | 600 m | | Rated load voltage | - | | Current consumption from load voltage L+ (without load) | + | | Rated value | DC 20.428.8 V | | Input voltage for signal "0" | DC 05 V | | Input voltage for signal "1" | DC 1128.8 V | | Input voltage hysteresis | - | | Signal logic input | - | | Frequency range | - | | Input resistance | - | | Input current for signal "1" | 3 mA | | Connection of Two-Wire-BEROs possible | ✓ | | Max. permissible BERO quiescent current | 1.5 mA | | Input delay of "0" to "1" | 1.5 ms | | Input delay of "1" to "0" | 1.5 ms | | Input filter delay | - | | Number of simultaneously utilizable inputs horizontal configuration | 4 | | Number of simultaneously utilizable inputs vertical configuration | 4 | | Input characteristic curve | IEC 61131-2, type 3 | | Initial data size | 4 Bit | | Technical data digital outputs | | | Number of outputs | 4 | | Cable length, shielded | 1000 m | | Cable length, unshielded | 600 m | | Rated load voltage | DC 20.428.8 V | | Reverse polarity protection of rated load voltage | - | | Current consumption from load voltage L+ (without load) | - | Hardware description System SLIO Technical data | Order no. | 054-1CB00 | |---|-----------------------| | Output voltage signal "1" at min. current | L+ (-0 V) | | Output voltage signal "1" at max. current | L+ (-125 mV) | | Output current at signal "1", rated value | 500 mA | | Signal logic output | - | | Output current at signal "0" max. (residual current) | 200 μΑ | | Output delay of "0" to "1" | 1.5 ms | | Output delay of "1" to "0" | 1.5 ms | | Minimum load current | - | | Lamp load | 10 W | | Parallel switching of outputs for redundant control of a load |
not possible | | Parallel switching of outputs for increased power | not possible | | Actuation of digital input | ✓ | | Switching frequency with resistive load | max. 300 Hz | | Switching frequency with inductive load | max. 0.5 Hz | | Switching frequency on lamp load | max. 10 Hz | | Internal limitation of inductive shut-off voltage | L+ (-45 V) | | Short-circuit protection of output | yes, electronic | | Trigger level | 1 A | | Number of operating cycle of relay outputs | - | | Switching capacity of contacts | - | | Output data size | - | | Status information, alarms, diagnostics | | | Status display | green LED per channel | | Interrupts | yes, parameterizable | | Process alarm | no | | Diagnostic interrupt | yes, parameterizable | | Diagnostic functions | yes | | Diagnostics information read-out | possible | | Supply voltage display | green LED | | Group error display | red LED | | Channel error display | red LED per channel | | Datasizes | | | Input bytes | 60 | | Output bytes | 60 | | Parameter bytes | 56 | | Diagnostic bytes | 20 | | Isolation | | | Between channels | - | | | | Technical data | Order no. | 054-1CB00 | |---|----------------------------| | Between channels of groups to | - | | Between channels and backplane bus | ✓ | | Between areas | - | | Max. potential difference between inputs and Mintern (Uiso) | DC 75 V/ AC 50 V | | Insulation tested with | AC 500 V | | Technical data positioning module | | | Number of channels | 2 | | Cable length (motor supply) | - | | Input voltage (rated value) | DC 24 V | | Input voltage (permitted range) | DC 20.428.8 V | | Motor current | 1.5 A | | Derating | - | | Cable length (motor) | - | | Power stage | 2x Full bridge PWM | | Short-circuit protection | ✓ | | Brake chopper | - | | PWM frequency | 32 kHz | | Pulse train frequency | - | | Micro steps | - | | Steps per rotation | - | | Type of encoder | A/B phase 24V single ended | | Cable length (encoder) | - | | Encoder frequency | 100 kHz | | Encoder resolution (internal) | 24 Bit | | Control type | closed loop | | Temperature sensor controller | ✓ | | Temperature sensor H-bridge | - | | Operating modes position functions | | | Homing via homing switch | ✓ | | Positioning via torque | ✓ | | Positioning without encoder | - | | Positioning with encoder | ✓ | | Speed control | ✓ | | Torque control | ✓ | | Housing | | | Material | PPE / PPE GF10 | | Mounting | Profile rail 35 mm | | | | Hardware description System SLIO Technical data | Order no. | 054-1CB00 | |------------------------------|----------------------------| | Mechanical data | | | Dimensions (WxHxD) | 12.9 mm x 109 mm x 76.5 mm | | Net weight | 65 g | | Weight including accessories | 65 g | | Gross weight | 79 g | | Environmental conditions | | | Operating temperature | 0 °C to 60 °C | | Storage temperature | -25 °C to 70 °C | | Certifications | | | UL certification | yes | | KC certification | yes | | UKCA certification | yes | | ChinaRoHS certification | yes | System SLIO Deployment **Basics** # 4 Deployment ## 4.1 Basics #### General # ij # Open Source license information - Open source software is used within the firmware. - You can retrieve the corresponding 'Open Source licence information' via the head module used. - For more details, refer to the 'Open Source Licence Information' in the manual for your head module. ## Addressing The System SLIO motion module provides its data, such as "Profiling target position" via an object dictionary. In this object dictionary the objects are organized and addressable a unique number consisting of *Index* and *Subindex*. The number is specified as follows: | 0x | Index (hexadecimal) | - | Subindex (decimal) | |---------|---------------------|---|--------------------| | Example | e: 0x8400-03 | | | To improve the structure and for expansion at System SLIO Motion Module another object numbering (index-assignment) is used besides the standard CiA 402. #### Index area By separating into index and subindex a grouping is possible. The individual areas are divided into groups of related objects. With the System SLIO motion module this object directory is structured as follows: | Index area | Content | |---------------|---| | 0x1000 0x6FFF | General data and system data | | 0x7000 0x7FFF | Data of the digital input and output part | | 0x8000 0x8FFF | Data drive 1 | | 0x9000 0x9FFF | Data drive 2 | Each object has a subindex 0. Calling an object with subindex 0, the number of available subindexes of the corresponding object is returned. # Accessing the object dictionary You have the following options for accessing the objects in the object dictionary: - Access via 'Acyclic channel'...page 99 - Any access to the object dictionary is acknowledged by the motion module. - Access via I/O area - The main objects are mapped in the I/O area. - The mapping cannot be changed. - 'In-/Output area'...page 97 Deployment System SLIO Basics > Structure of a positioning control Please note if you write via the Acyclic channel to objects, which are mapped in the I/O area, their values will be overwritten again with the next cycle. Therefore, data mapped in the I/O area should not be written via the Acyclic channel! #### Input/Output data The motion module uses 60byte input and 60byte output data. | Head module | Backplane bus | Motion | module | |---------------------------|---------------|--------------|-----------------| | CPU respectively bus cou- | \rightarrow | Process data | Acyclic channel | | pler | ← | 60byte | | The data exchange with the motion module must be consistent across the 60 bytes! It is recommended to control it via the process image. ## 4.1.1 DC motor module The FM 054-1CB00 integrates a compact motion control solution for direct control of two DC motors in a very compact design. DC motors are easy to control because the speed is proportional to the voltage. The controlling of the current happens by means of PWM with a clock speed of 32kHz. By connecting an encoder per drive and the integration into the control circuit, the implementation of simple axes is possible. The power stage has an overload and short circuit protection. # 4.1.2 Structure of a positioning control ## Structure The figure below shows the structure of a typical positioning control - PLC Superordinate head module respectively controller. - M Stepper motor - E Encoder - S Software limit switch System SLIO Deployment Basics > Structure of a positioning control #### Control The *Control* consists of the PLC with the user program for the processing and the motion module to control the drive. The motion module has an integrated power stage. This generated from the module signals the required drive currents. You can define a software limit switch in the motion module and react in the user program on the overrun. #### **CAUTION** Please provide for track limits (general position limit) respectively to avoid damages besides software limit switch hardware limit switches and also consider this in your safety concept. #### Motor A DC motor is an engine for high-precision positioning. This consists of a fixed stator with permanent magnets and a rotating armature. The current supply to the armature winding happens by means of carbon brushes via the commutator as sliding contact. The individual armature windings are connected via the commutator, which serves as a pole changer. As soon as the armature winding is energized, a magnetic field builds up in the armature. This results, influenced by the permanent magnets, in a rotational movement of the armature. Due to the rotation the commutator reverses the polarity in the armature. In this way the rotational movement is continued steadily. Controlling a DC motor by means of pulse width modulation (PWM) is low-loss and has a high efficiency. With PWM, the start and stop time of a square-wave signal is varied at a fixed base frequency of 32kHz. This results in different average voltages. When selecting a motor, the following factors must be considered: - Torque curve across the speed - Motor current across the speed - Winding resistance respectively motor inductance #### **Encoder** - The encoder respectively rotation encoder provides the controller with the position of the drive by means of digital signals. This can accordingly be evaluated by the PLC. - The encoder respectively rotation encoder supply a certain number of pulses per revolution. - The value generation is done by counting the pulses. #### Mechanical For the requirements of the load to be moved and the consideration of additional loads such as bearings and gears, you can determine the necessary motor data. Here important parameters are: - Mass inertia - Cycle times of positioning - Start, holding and torque at the maximum required speed - Acceleration and torque when passing through mechanical resonances e.g. when using mechanical memories as spring elements, vibration buffer or long drive belts. To avoid step losses, in accordance with the own inertia, the output torque of the engine should be greater than the determined mechanical torque. Deployment System SLIO Basics > Encoder - signal evaluation # 4.1.3 Encoder - signal evaluation #### Signal evaluation - Incremental encoder are sensors for detecting angular or positional changes. - Depending on the sensor type and the desired resolution, the scanning happens by sliding contact, photo electrically or magnetically. - The scanning via sliding contact works in principle like a switch, which is mechanically operated. - With the *optical scanning* a disk, which has a fine raster, is optically scanned. - With the magnetic scanning a pole wheel or magnetic band is scanned which has been written with a raster by a magnetization, before. - The incremental encoder has two sensors *Track A* and *Track B* for scanning. - The sensors are arranged at an angle of 90 degrees from each other on
the system to be scanned. - In a rotational movement of the system, the sensors generate a specific number of pulses. These are a measure of the covered angel or way. With the electrical phase shift of the two signals the direction of rotation can be determined. - If the axis rotates to the right, then the signal of *Track A* is leading 90° towards the signal of *Track B*. - If the axis rotates to the left, then the signal of Track A is lagging 90° towards the signal of Track B. - During the sensor evaluation from the difference between two counter values the velocity and direction can be determined. - With 1-fold evaluation one signal edge 0-1 of Track A corresponds to one counter pulse respectively one division of the system to be scanned corresponds to one counter pulse. - With *4-fold* evaluation one signal edge of *Track A* and *Track B* corresponds to one counter pulse. The 4-fold evaluation is very often used. - #1 1-fold evaluation - #4 4-fold evaluation System SLIO Deployment Commissioning > Start-up of the System SLIO motion module # 4.2 Commissioning #### 4.2.1 Installation - 1. Build your System SLIO and connect it. 'Basics and mounting'...page 11. - 2. Connect your drive. 'Connecting a motor'...page 65 # 4.2.2 Inspections and tests before the test operation #### Preparation Please check the following items, and take appropriate measures in the event of an error, before you start the test operation. - Is there an emergency stop mechanism so that you can quickly switch off the drive in the event of danger or a fault? - Are all wiring and connections correct? - Are all nuts and bolts at the drive properly tightened? - For a motor with oil seal: Is the seal not damaged and is the motor lubricated? Please always regard the start-up instructions of your motor! # 4.2.3 Start-up of the System SLIO motion module #### Preparation Please check the following items, and take appropriate measures in the event of an error, before you start the test operation. - Check the correct setting of the set points for the drive and the I/O signals from the superordinate control. - Check wiring between the superordinate control and your drive as well as the polarity of the wires. - Check all operational settings of your drive. #### Setting the limits Set the respective system limits, the system behavior and characteristics in the object dictionary via the *Acyclic channel 99*. These are e.g.: - Behaviour at quick stop and on error - Motor maximum current '0x8C00-04 - Motor max. current'...page 147 Current limits '0x8600-04 - Current limit positive direction'...page 141 '0x8600-05 - Current limit negative direction'...page 141 - Velocity limit values - Position limitations - Assignment of the digital inputs and outputs #### Steps of commissioning # Always adapt parameters to the operating mode! Please ensure that the module always has the correct parameters according to the selected operating mode! Pay special attention to the use of the current values in the output area! 'In-/Output area'...page 97 #### Start parameter - 'Start Start parameter homing'...page 69 - 'Start Start parameter PtP position profile'...page 76 - Start Start parameter velocity profile'...page 87 - 'Start Start parameter torque control'...page 91 Deployment System SLIO Commissioning > Start-up of the System SLIO motion module 1. Perform for your System SLIO and your motion module a hardware configuration and create your application program. Transfer both into your CPU. A separate parametrization of the motion module is not required. <u>2.</u> #### Power supply The module is to be power supplied with the both DC 24V voltages power section supply I/O area and electronic power supply. When commissioning these may simultaneously or electronic power supply must be switched on first. When commissioning these may simultaneously or power section supply I/O area must be switched on first. 'Standard wiring'...page 33 Switch your CPU to RUN state. - 3. Switch on the motor. - → Your system is now ready for communication and you can establish parameter setting via the Acyclic channel. - 4. Send the command "Shutdown". '0x8100-01 - Control word'...page 120 Bit 3...0: x110 - → The motion module shows the state 'Ready to switch on'. - 5. Send the command "Switch on". '0x8100-01 - Control word'...page 120 Bit 3...0: 0111 - → The motion module shows the state 'Switched on'. - **6.** Send the command "Enable operation". '0x8100-01 - Control word'...page 120 Bit 3...0: 1111 ➡ The motion module shows the state 'Operation enabled'. The drive is now ready for your move commands. System SLIO Deployment Connecting a motor > Connection options # 4.3 Connecting a motor # 4.3.1 Connection options #### Connections #### CAUTION #### Danger of injury from electrical shock and damage to the unit! Put the System SLIO in a safe, powered down state before starting installation, disassembly or wiring of the System SLIO modules! You can use wires with a cross section of 0.08mm² up to 1.5mm². For the connection lines the following requirements apply: - For the digital I/O connection with DIO operation single lines can be used. In encoder mode, shielded cables are to be used. - A motor must be connected via shielded lines. - Generally, power and signal lines must be laid separately. | Pos. | Function | Туре | Description | | |-----------|----------------------|------|---------------------------|--| | 1 | PA1 | 0 | DC Motor 1 - connection 1 | | | 2 | PA2 | 0 | DC Motor 1 - connection 2 | | | 3 | I/O1 | I/O | Digital input/output 1 | | | 4 | I/O3 | I/O | Digital input/output 3 | | | 5 | PB1 | 0 | DC Motor 2 - connection 1 | | | 6 | PB2 | 0 | DC Motor 2 - connection 2 | | | 7 | I/O2 | I/O | Digital input/output 2 | | | 8 | I/O4 | I/O | Digital input/output 4 | | | I. Imm. A | Is largest Or Output | | | | I: Input, O: Output ## Power supply The module is to be power supplied with the both DC 24V voltages power section supply I/O area and electronic power supply. When commissioning these may simultaneously or electronic power supply must be switched on first. When commissioning these may simultaneously or power section supply I/O area must be switched on first. 'Standard wiring'...page 33 Deployment System SLIO Drive profile > Overview # 4.4 Drive profile #### 4.4.1 Overview #### Drive profile CiA 402 - The System SLIO motion module FM 054-1CB00 is based largely on the drive profile CiA 402. - The drive profile CiA 402 defines state machine, operating modes and objects (parameters) of components for the drive technology. - Here significant objects for control and evaluation of the state machine are Control word, Status word and Operation mode. - Further object serve for configuration and diagnostics of the motion module. - All the object are summarized in 'Object dictionary'...page 109. - The most important objects can be found in 'In-/Output area'...page 97. - The access of the objects during runtime happens via 'Acyclic channel'...page 99. #### Term definitions State machine - The motion module has a state machine implemented. The status of the state machine can be controlled by means of commands. State change - The relevant command or any errors cause a state change. State - The state is the current state of the state machine. Via the *Status word* '0x8100-02 - *Status word*'...page 121 you can access the state. Here the state is output via appropriate combinations of bits. Command - For triggering of state transitions, certain combinations of bits must be set in the *Control word '0x8100-01 - Control word'...page 120*. Such a combination is called *Command*. # Addressing The System SLIO motion module provides its data, such as "Profiling target position" via an object dictionary. In this object dictionary the objects are organized and addressable a unique number consisting of *Index* and *Subindex*. The number is specified as follows: 0x Index (hexadecimal) - Subindex (decimal) Example: 0x8400-03 Ñ To improve the structure and for expansion at System SLIO Motion Module another object numbering (index-assignment) is used besides the standard CiA 402. # 0 #### Access to 2 drives For each drive, there is an object dictionary whose structures are identical. Please note that the descriptions always relate to drive 1, unless otherwise noted. To access drive 2, you have to add 0x1000 to the corresponding object. - Object dictionary drive 1: 0x8000 ... 0x8FFF - Object dictionary drive 2: 0x9000 ... 0x9FFF System SLIO **Deployment** Drive profile > States #### 4.4.2 **States** State machine according to **CiA 402** - 0 Control power on, drive is not power supplied. - В Control and main power on, drive is not power supplied. - С Control and main power on, drive is power supplied. - Status of the Status word XXX.. Transition by: - 0,1 Device start-up and self-test after PowerON - 13 Drive or communication error - 14 Internal fault reaction - Disabling command output disable (BASP) 16 - '0x8100-01 Control word'...page 120: Bit 3...0: x110: Command "Shutdown" 2,6 - 3 - Bit 3...0: 0111: Command "Switch on" Bit 3...0: 1111: Command "Enable operation". 4 According to CiA 402 the automatic transition from Ready to switch on to Oper- - ation enabled is possible. Bit 3...0: 0111: Command "Disable operation" 5 - Bit 3...0: x01x: Command "Quick stop" 11 - 7,8,9,12 Bit 3...0: xx0x: Command "Disable voltage" - Bit 7: Edge 0-1: Command "Fault reset" 15 Deployment System SLIO Drive profile > Operating modes #### Accessing the state machine At CiA 402 the total control is realized via the following two objects. Both objects are mapped in the cyclic data exchange: '0x8100-01 - Control word'...page 120 \rightarrow State machine \rightarrow '0x8100-02 - Status word'...page 121 # 4.4.3 Operating modes #### 4.4.3.1 Overview #### Communication - The communication takes place via the I/O area. - The main data of the object dictionary are mapped into the I/O area. 'In-/Output area'...page 97 - The objects, which are
not mapped, can be accessed by the *Acyclic channel*. 'Acyclic channel'…page 99 #### Operating modes The following modes according to the device profile CiA 402 are available: - 'Homing'...page 69 - 'PtP positioning profile'...page 75 - 'Velocity profile'...page 86 - 'Torque control'...page 90 ### Application data In addition to the control parameters you have to specify the data from your application, consisting of the nominal drive data and scaling. '0x8180-02 - Gear factor'...page 126 '0x8C00-04 - Motor max. current'...page 147 → Application data '0x8C00-06 - Motor nominal velocity'...page 147 System SLIO Deployment Homing # 4.5 Homing #### Overview Here you will find information on how the System SLIO motion module searches the *reference position*. The reference position is also called "basic position", "start position" or "home position". *Homing* is an initialisation drive of a drive, where the correct position is determined by means of an reference signal. This process is called "referencing", "home drive" or "homing". When referencing you can determine velocity, acceleration, deceleration and type of homing. The FM 054-1CB00 supports the following homing types: - 'Homing by means of a homing switch'...page 70 - 'Homing to actual position'...page 72 - 'Homing by means of current limitation'...page 73 # Start - Start parameter homing #### Please note: - 'Commissioning'...page 63 - 'Application data'...page 68 Deployment System SLIO Homing > Homing by means of a homing switch # 4.5.1 Homing by means of a homing switch # Homing by means of a homing switch - Homing can only be accessed from the *PtP positioning profile* mode. - The *target position* is the reference position, which is maximally moved to. This is to be specified with sign. - The homing happens according to the following steps: - It is traversed with the high *velocity V1* toward the target position *T* until the homing switch *R* is overrun. - Then it is decelerated and traversed in the opposite direction with *velocity V1*. - If the homing value *R* is overrun again, it is again decelerated and it is again accelerated in the positive direction with slower *velocity V2*. - With the next overrun of the homing switch the reference position R is set and moved to with *velocity V2*. - Use To connect the home switch one of the digital inputs of the motion module and specify the polarity of the switch with the parametrization. - V₁ High velocity V₂ Low velocity - R Homing switch respectively homing value - T Target position - L General position limit System SLIO Deployment Homing > Homing by means of a homing switch #### **Proceeding** 1. For commissioning 'Commissioning'...page 63 Homing objects 'Homing - 0x8300'...page 129 - 2. Switch the state machine to state 'Switch on disabled' States'...page 67 - Send the command "Disable voltage" '0x8100-01 Control word'...page 120 Bit 3...0: xx0x: - → The motion module shows the state 'Switch on disabled'. - 3. Set the following parameters: - '0x8300-02 Homing method'...page 129 - Enter the value 17. - '0x8300-03 Homing digital input I/O1...I/O4'...page 129 - Select the input to which the homing switch is connected. - '0x8300-04 Homing digital input active polarity I/O1...I/O4'...page 130 - Define the polarity of the switch - '0x8300-05 Homing target position'...page 130 - Define by specifying a target position the maximum axis movement path, that during movement the homing switch is passed over. - '0x8300-06 Homing velocity V1'...page 130 - Specify the high velocity for the movement to the homing switch. - '0x8300-07 Homing velocity V2'...page 131 - Specify the low velocity for the movement to the homing switch. - '0x8300-08 Homing acceleration'...page 131 - Specify the acceleration for homing. - '0x8300-09 Homing deceleration'...page 131 - Specify the deceleration for homing. - '0x8300-10 Homing offset value'...page 131 - If necessary specify an offset for the homing position. - **4.** ▶ '0x8400-03 Positioning profile target velocity'...page 132 - Enter the value 0. - 5. Switch your motion module to the *Positioning* mode. '0x8280-01 Operating mode requested'…page 128 - Enter the value 1. - 6. ▶ Send the command "Shutdown" '0x8100-01 - Control word'...page 120 Bit 3...0: x110: - The motion module shows the state 'Ready to switch on'. - 7. Send the command "Switch on". '0x8100-01 - Control word'...page 120 Bit 3...0: 0111 - → The motion module shows the state 'Switched on'. - 8. Send the command "Enable operation". '0x8100-01 - Control word'...page 120 Bit 3...0: 1111 - → The motion module shows the state 'Operation enabled'. The drive is now ready for your move commands. - 9. Switch your motion module to the *Homing* mode. '0x8280-01 Operating mode requested'…page 128 - Enter the value 6. - → The drive starts homing. Upon completion of the homing, the position of the reference switch is used as the reference point. Deployment System SLIO Homing > Homing to actual position # 4.5.2 Homing to actual position #### **Proceeding** 1. For commissioning 'Commissioning'...page 63 Homing objects 'Homing - 0x8300'...page 129 - 2. Switch the state machine to state 'Switch on disabled' States'...page 67 - Send the command "Disable voltage" '0x8100-01 Control word'...page 120 Bit 3...0: xx0x: - → The motion module shows the state 'Switch on disabled'. - **3.** ▶ Set the following parameters: - '0x8300-02 Homing method'...page 129 - Enter the value 37. - '0x8300-10 Homing offset value'...page 131 - If necessary specify an offset for the homing position. - **4.** ► '0x8400-03 Positioning profile target velocity'...page 132 - Enter the value 0. - 5. Switch your motion module to the *Positioning* mode. '0x8280-01 Operating mode requested'…page 128 - Enter the value 1. - 6. ▶ Send the command "Shutdown" '0x8100-01 - Control word'...page 120 Bit 3...0: x110: - → The motion module shows the state 'Ready to switch on'. - 7. Send the command "Switch on". '0x8100-01 - Control word'...page 120 Bit 3...0: 0111 - → The motion module shows the state 'Switched on'. - **8.** Send the command "Enable operation". '0x8100-01 - Control word'...page 120 Bit 3...0: 1111 - → The motion module shows the state 'Operation enabled'. The drive is now ready for your move commands. - **9.** Switch your motion module to the *Homing* mode. '0x8280-01 - Operating mode requested'...page 128 - Enter the value 6. - → '0x8300-10 Homing offset value'...page 131 is used directly as actual position in '0x8480-02 - Position actual value'...page 133. Homing > Homing by means of current limitation ## 4.5.3 Homing by means of current limitation ## Homing by means of current limitation - Homing can only be accessed from the *PtP positioning profile* mode. - If homing is completed, it is returned to the *PtP positioning profile* mode, again. - The *target position* is the reference position, which is maximally moved to. This is to be specified with sign. - The homing happens according to the following steps: - It is traversed with the high velocity V1 toward the target position T until the drive is stopped by a soft stop. - If a predefined limit current is exceeded, the current position is set as homing position R. - To move the drive free, you can also specify an offset. - V₁ High velocity - V₂ Low velocity - R Homing switch respectively homing value - T Target position - L General position limit Homing > Homing by means of current limitation #### **Proceeding** 1. For commissioning 'Commissioning'...page 63 Homing objects 'Homing - 0x8300'...page 129 - 2. Switch the state machine to state 'Switch on disabled' States'...page 67 - Send the command "Disable voltage" '0x8100-01 Control word'...page 120 Bit 3...0: xx0x: - → The motion module shows the state 'Switch on disabled'. - 3. ► '0x8400-03 Positioning profile target velocity'...page 132 - Enter the value 0. - **4.** Switch your motion module to the *Positioning* mode. '0x8280-01 Operating mode requested'…page 128 - Enter the value 1. - **5.** Set the following parameters: - '0x8300-02 Homing method'...page 129 - Enter the value -1 for homing by means of current limitation. - '0x8600-04 Current limit positive direction'...page 141 respectively '0x8600-05 -Current limit negative direction'...page 141 - Specify the limit currents. - '0x8300-05 Homing target position'...page 130 - Define by specifying a target position the maximum axis movement path, that during movement the soft stop is hit. - '0x8300-06 Homing velocity V1'...page 130 - Specify the high velocity for the movement to the soft stop. - '0x8300-07 Homing velocity V2'...page 131 - Specify the low velocity for the free movement from the soft stop. - '0x8300-08 Homing acceleration'...page 131 - Specify the acceleration for homing. - '0x8300-09 Homing deceleration'...page 131 - Specify the deceleration for homing. - '0x8300-10 Homing offset value'...page 131 - If necessary specify an offset for the homing position. - 6. ▶ Send the command "Shutdown" '0x8100-01 - Control word'...page 120 Bit 3...0: x110: - The motion module shows the state 'Ready to switch on'. - 7. Send the command "Switch on". '0x8100-01 - Control word'...page 120 Bit 3...0: 0111 - ➡ The motion module shows the state 'Switched on'. - 8. Send the command "Enable operation". '0x8100-01 - Control word'...page 120 Bit 3...0: 1111 - The motion module shows the state 'Operation enabled'. The drive is now ready for your move commands. - 9. Switch your motion module to the *Homing* mode. '0x8280-01 Operating mode requested'…page 128 - Enter the value 6. - ➡ The drive starts homing. Upon completion of the homing, the position of the soft stop is used as the reference point. The motion module then automatically switches back to the *Positioning* mode. PtP positioning profile ## 4.6 PtP positioning profile #### Overview #### Always adapt parameters to the operating mode! Please ensure that the module always has the correct parameters according to the selected operating mode! Pay special
attention to the use of the current values in the output area! 'In-/Output area'...page 97 #### Start parameter - 'Start Start parameter homing'...page 69 - 'Start Start parameter PtP position profile'...page 76 - 'Start Start parameter velocity profile'...page 87 - Start Start parameter torque control'...page 91 With the PTP-position profile, you can move to target positions by specifying profile velocity, profile acceleration and profile deceleration. Here, the limits for velocity and maximum traversing position are always be considered. Due to changes of values are immediately used and activated, "on the fly" changes of the move process are possible. - Changes in acceleration respectively deceleration are directly used with the profile generation. - Deceleration and reversing is automatically executed when a new target position requires a change of direction. A separated activation by starting the job in the *Control* word is not necessary. - If a specified target position is reached or a limit is activated during the traversing, this is indicated in '0x8100-02 Status word'...page 121. - Current values of position, velocity, acceleration and deceleration are calculated by the System SLIO motion module itself. - The System SLIO motion module works in a closed-loop mode - Positioning and velocity loops are closed. - The encoder signal is evaluated and from this the current values of position, velocity, acceleration and deceleration are determined. '0x8F00-01 - Encoder feedback configuration'...page 148 PtP positioning profile #### Structure PtP positioning profile #### PtP - positioning profile #### **Limit Position - Limitation position** #### Position control - Position controller PtP positioning profile #### **Limit Velocity - Limitation velocity** #### Velocity control - speed controller #### **Limit Current - Limitation current** PtP positioning profile #### Current control - Current controller #### Limit Voltage - Limitation voltage #### int. PS - Internal power stage, motor, encoder PtP positioning profile > Examples ## 4.6.1 Examples Symmetrical acceleration and deceleration with reaching the target velocity - Setting - Target position - Profile velocity - Profile acceleration - Profile deceleration - Target velocity is reached. - Specifying a new target position as starting position. PtP positioning profile > Examples Symmetrical acceleration and deceleration without reaching the target velocity - Setting - Target position - Profile velocity - Profile acceleration - Profile deceleration - Target velocity is not reached, since before deceleration is initiated to reach the target position. - Specifying a new target position as starting position. PtP positioning profile > Examples Asymmetrical acceleration and deceleration with reaching the target velocity - Setting - Target position - Profile velocity - Profile acceleration - Profile deceleration - Target velocity is reached. - Specifying a new target position as starting position. PtP positioning profile > Examples Asymmetrical acceleration and deceleration with reducing the acceleration during the move - Setting - Target position - Profile velocity - Profile acceleration - Profile deceleration - Target velocity is reached. - Specifying a new target position as starting position. PtP positioning profile > Examples Symmetrical acceleration and deceleration with reaching the target velocity - Setting - Target position - Profile velocity - Profile acceleration - Profile deceleration - Target velocity is reached. - Specifying a new target position as starting position during deceleration. PtP positioning profile > Examples Symmetrical acceleration and deceleration with specifying a target position four times - Setting - Target position - Profile velocity - Profile acceleration - Profile deceleration - Target velocity is reached. - Four times setting a new target position after the previous target position was reached. Velocity profile ## 4.7 Velocity profile #### Structure Π̈́ #### Always adapt parameters to the operating mode! Please ensure that the module always has the correct parameters according to the selected operating mode! Pay special attention to the use of the current values in the output area! 'In-/Output area'...page 97 #### Start parameter - 'Start Start parameter homing'...page 69 - 'Start Start parameter PtP position profile'...page 76 - 'Start Start parameter velocity profile'...page 87 - 'Start Start parameter torque control'...page 91 In the operation mode *Velocity profile* the velocity is output according to profile acceleration and profile deceleration until the target velocity is reached. This operation mode bases on the *PtP positioning profile*, except that position settings such as target and limit values have no effect. With this object '0x8500-01 - *Velocity control configuration*'...page 137, you can specify the frequency pulse patterns. Velocity profile '0x8580-06 - Deceleration limit'...page 140 Velocity profile #### Velocity control - Speed controller #### **Limit Current - Limitation current** Velocity profile #### Current control - Current controller #### Limit Voltage - Limitation voltage #### int. PS - Internal power stage, motor, encoder Torque control ## 4.8 Torque control #### Structure # Д #### Always adapt parameters to the operating mode! Please ensure that the module always has the correct parameters according to the selected operating mode! Pay special attention to the use of the current values in the output area! 'In-/Output area'...page 97 #### Start parameter - 'Start Start parameter homing'...page 69 - 'Start Start parameter PtP position profile'...page 76 - 'Start Start parameter velocity profile'...page 87 - 'Start Start parameter torque control'...page 91 In the operating mode *Torque control* a current set value is outputted to the drive. If the actual current exceeds the permissible motor current, there is an error reaction of the motion module, which can be configured. Also you can set with '0x8500-07 - Velocity control limit type for torque mode'...page 138 how the engine behaves when reaching the permissible motor current. Start: Start parameters Limit Current: Limitation current Limit Voltage: Limitation voltage Current control: Current controller int. PS: Internal power stage M: Motor Encoder: Encoder current value Torque control ## Start - Start parameter torque control #### **Limit Current - Limitation current** #### Current control - Current controller Deployment I/O1...I/O4 #### Limit Voltage - Limitation voltage #### int. PS - Internal power stage, motor, encoder ## 4.9 Deployment I/O1...I/O4 #### Overview The module has 4 digital connectors I/O1...I/O4. The ports can be used with the following configurable modes: - Used as digital input - Used as digital output - Pairs use as encoder input for 24V HTL signal #### **Default settings** The 4 digital ports of the motion module have the following default settings: ## Default setting | Pos. | Function | Туре | Description | |------|----------|------|---------------| | 3 | I/O1 | I | Digital input | | 4 | I/O3 | I | Digital input | | 7 | I/O2 | Ι | Digital input | | 8 | I/O4 | Ι | Digital input | | | | | | I: Input, O: Output Via 'Digital inputs I/O1...I/O4 - 0x7100'...page 116 respectively 'Digital output I/O1...I/O4 - 0x7200'...page 117 the 4 digital pins of the motion modules can be configured. Deployment I/O1...I/O4 > Objects #### **Connections** Digital input: DC 24V IEC 61131-2 type 3 High-side (sink) Digital output: DC 24V 500 mA High-side (source) Encoder mode: 24V HTL signal Phase A and B 100 kHz 4-fold evaluation 'Encoder - deployment'...page 94 ## 4.9.1 Objects #### Structure #### **DIO Control** Deployment I/O1...I/O4 > Usage as input for encoder #### 4.9.2 Usage as input for encoder #### 4.9.2.1 Encoder - signal evaluation #### Signal evaluation - Incremental encoder are sensors for detecting angular or positional changes. - Depending on the sensor type and the desired resolution, the scanning happens by sliding contact, photo electrically or magnetically. - The scanning via *sliding contact* works in principle like a switch, which is mechanically operated. - With the optical scanning a disk, which has a fine raster, is optically scanned. - With the magnetic scanning a pole wheel or magnetic band is scanned which has been written with a raster by a magnetization, before. - The incremental encoder has two sensors *Track A* and *Track B* for scanning. - The sensors are arranged at an angle of 90 degrees from each other on the system to be scanned. - In a rotational movement of the system, the sensors generate a specific number of pulses. These are a measure of the covered angel or way. With the electrical phase shift of the two signals the direction of rotation can be determined. - If the axis rotates to the right, then the signal of Track A is leading 90° towards the signal of Track B. - If the axis rotates to the left, then the signal of Track A is lagging 90° towards the signal of Track B. - During the sensor evaluation from the difference between two counter values the velocity and direction can be determined. - With 1-fold evaluation one signal edge 0-1 of Track A corresponds to one counter pulse respectively one division of the system to be scanned corresponds to one counter pulse. - With 4-fold evaluation one signal edge of *Track A* and *Track B* corresponds to one counter pulse. The 4-fold evaluation is very often used. #1 1-fold evaluation #4 4-fold evaluation #### 4.9.2.2 Encoder - deployment ### Connections There is the possibility to connect an encoder via I/O1 and I/O3 respectively via I/O2 and I/O4. With the value 1 of object '0x8F00-01 - Encoder feedback configuration'...page 148 the encoder function for I/O1 and I/O3 of drive 1 is enabled. The System SLIO motion module works in a closed-loop mode Positioning and velocity loops are closed Current values of position, velocity, acceleration and deceleration are calculated
by the System SLIO motion module itself. Via '0x8F00-02 - Encoder actual value'...page 149 the encoder value can be read and further processed in you user program. If there is one encoder connected, the unused digital in-/outputs are further free for usage. Deployment I/O1...I/O4 > Usage as input for encoder #### **Objects** '0x8F00-01 - Encoder feedback configuration'...page 148 DIO Control Encoder '0x8F00-02 - Encoder actual value'...page 149 *) For each drive, there is an object dictionary whose structures are identical. Please note that the descriptions always relate to drive 1, unless otherwise noted. To access drive 2, you have to add 0x1000 to the corresponding object. - Object dictionary drive 1 (I/O1 and I/O3): 0x8000 ... 0x8FFF - Object dictionary drive 2 (I/O2 and I/O4): 0x9000 ... 0x9FFF #### **Connections** Encoder mode: 24V HTL signal Phase A and B 100 kHz 4-fold evaluation | Pos. | Function | Туре | Description | |----------|----------|------|--------------------------| | 3 | I/O1 | I | Encoder function drive 1 | | 4 | I/O3 | I | Encoder function drive 1 | | 7 | I/O2 | 1 | Encoder function drive 2 | | 8 | I/O4 | 1 | Encoder function drive 2 | | I: Input | | | | Via 'Digital inputs I/O1...I/O4 - 0x7100'...page 116 respectively 'Digital output I/O1...I/O4 - 0x7200'...page 117 the 4 digital pins of the motion modules can be configured. Brake control ## 4.10 Brake control #### Overview You can control a break via a digital input/output channel. For brake control you have the following possibilities: - Braking via external brake - Quick stop via ramping #### Braking via external brake You have the possibility to control a brake via a digital input/output channel. By integration into your user program, you can control it if necessary. #### Quick stop Quick stop is a ramp function, with which the connected motor can be decelerated and brought to stop. During normal operation it is not necessary to activate this brake functions manually, since normal braking operations are performed by the profile generator. Quick stop is used when the operating conditions require a rapid stopping. For quick stop there are the following possibilities: - Direct stop with short-circuit braking and subsequent state change to 'Switch on disabled'. - Brake with quick stop deceleration and state change to 'Switch on disabled'. #### Quick stop - objects | '0x8100-01 - Control word'page 120 | | | | | |---|---------------|-------------------------------|---------------|-----------------------------------| | '0x8200-01 - Configuration quick
stop'page 127 | \rightarrow | Quick stop configu-
ration | \rightarrow | '0x8100-02 - Status word'page 121 | | '0x8580-03 - Deceleration quick stop value'page 139 | | | | | In-/Output area ## 4.11 In-/Output area ## Input/Output data The motion module uses 60byte input and 60byte output data. | Head module | Backplane bus | Motion module | | |---------------------------|---------------|---------------|-----------------| | CPU respectively bus cou- | \rightarrow | Process data | Acyclic channel | | pler | ← | 60b | yte | The data exchange with the motion module must be consistent across the 60 bytes! It is recommended to control it via the process image. ## Input area | Offset | Size | Area | Description | |--------|------|---------|--| | 0 | 2 | Drive 1 | '0x8100-02 - Status word'page 121 | | 2 | 2 | Drive 1 | '0x8280-02 - Operating mode actual'page 128 | | 4 | 4 | Drive 1 | '0x8480-02 - Position actual value'page 133 | | 8 | 4 | Drive 1 | '0x8500-02 - Velocity control actual value'page 137 | | 12 | 4 | Drive 1 | '0x8580-02 - Acceleration/Deceleration actual value'page 139 | | 16 | 4 | Drive 1 | '0x8480-10 - Lag error'page 135 | | 20 | 2 | Drive 1 | '0x8600-02 - Current actual value'page 140 | | 22 | 2 | - | reserved | | 24 | 2 | Drive 2 | * '0x8100-02 - Status word'page 121 | | 26 | 2 | Drive 2 | * '0x8280-02 - Operating mode actual'page 128 | | 28 | 4 | Drive 2 | * '0x8480-02 - Position actual value'page 133 | | 32 | 4 | Drive 2 | * '0x8500-02 - Velocity control actual value'page 137 | | 36 | 4 | Drive 2 | * '0x8580-02 - Acceleration/Deceleration actual value'page 139 | | 40 | 4 | Drive 2 | * '0x8480-10 - Lag error'page 135 | | 44 | 2 | Drive 2 | * '0x8600-02 - Current actual value'page 140 | | 46 | 2 | - | reserved | | 48 | 1 | DIOs | '0x7100-05 - Digital input states I/O1I/O4'page 117 | | 49 | 1 | DIOs | '0x7200-05 - Digital output states I/O1I/O4 actual states'page 118 | | 50 | 1 | Acyclic | Acyclic communication channel: | | | | | Status | | 51 | 1 | Acyclic | Acyclic communication channel: | | | | | Subindex in the object dictionary | | 52 | 2 | Acyclic | Acyclic communication channel: | | | | | Index in the object dictionary | | 54 | 4 | Acyclic | Acyclic communication channel: | | | | | Data | | 58 | 1 | - | reserved | In-/Output area | Offset | Size | Area | Description | |--------|------|------|-------------| | 59 | 1 | - | reserved | *) For each drive, there is an object dictionary whose structures are identical. Please note that the descriptions always relate to drive 1, unless otherwise noted. To access drive 2, you have to add 0x1000 to the corresponding object. - Object dictionary drive 1: 0x8000 ... 0x8FFF - Object dictionary drive 2: 0x9000 ... 0x9FFF Please note if you write via the Acyclic channel to objects, which are mapped in the I/O area, their values will be overwritten again with the next cycle. Therefore, data mapped in the I/O area should not be written via the Acyclic channel! #### Output area | Offset | Size | Area | Description | |--------|------|---------|--| | 0 | 2 | Drive 1 | '0x8100-01 - Control word'page 120 | | 2 | 2 | Drive 1 | '0x8280-01 - Operating mode requested'page 128 | | 4 | 4 | Drive 1 | '0x8400-02 - Positioning profile target position'page 132 | | 8 | 4 | Drive 1 | '0x8400-03 - Positioning profile target velocity'page 132 | | 12 | 4 | Drive 1 | '0x8400-04 - Positioning profile target acceleration'page 133 | | 16 | 4 | Drive 1 | '0x8400-05 - Positioning profile target deceleration'page 133 | | 20 | 2 | Drive 1 | The assignment depends on the selected operating modes ■ Torque control enabled - '0x8600-03 - Current target value'page 140 ■ Torque control disabled - '0x8600-04 - Current limit positive direction'page 141 respectively '0x8600-05 - Current limit negative direction'page 141 | | 22 | 2 | - | reserved | | 24 | 2 | Drive 2 | '0x8100-01 - Control word'page 120* | | 26 | 2 | Drive 2 | '0x8280-01 - Operating mode requested'page 128* | | 28 | 4 | Drive 2 | '0x8400-02 - Positioning profile target position'page 132* | | 32 | 4 | Drive 2 | '0x8400-03 - Positioning profile target velocity'page 132* | | 36 | 4 | Drive 2 | '0x8400-04 - Positioning profile target acceleration'page 133* | | 40 | 4 | Drive 2 | '0x8400-05 - Positioning profile target deceleration'page 133* | | 44 | 2 | Drive 2 | The assignment depends on the selected operating modes ■ Torque control enabled - '0x8600-03 - Current target value'page 140* ■ Torque control disabled - '0x8600-04 - Current limit positive direction'page 141* respectively '0x8600-05 - Current limit negative direction'page 141* | | 46 | 2 | - | reserved | Acyclic channel | Offset | Size | Area | Description | |--------|------|---------|---| | 48 | 1 | - | reserved | | 49 | 1 | Drive | '0x7200-06 - Digital output states I/O1I/O4 requested states'page 119 | | 50 | 1 | Acyclic | Acyclic communication channel: | | | | | Command | | 51 | 1 | Acyclic | Acyclic communication channel: | | | | | Subindex in the object dictionary | | 52 | 2 | Acyclic | Acyclic communication channel: | | | | | Index in the object dictionary | | 54 | 4 | Acyclic | Acyclic communication channel: | | | | | Data | | 58 | 1 | - | reserved | | 59 | 1 | - | reserved | ^{*)} For each drive, there is an object dictionary whose structures are identical. Please note that the descriptions always relate to drive 1, unless otherwise noted. To access drive 2, you have to add 0x1000 to the corresponding object. - Object dictionary drive 1: 0x8000 ... 0x8FFF - Object dictionary drive 2: 0x9000 ... 0x9FFF ## 4.12 Acyclic channel #### Overview Please note if you write via the Acyclic channel to objects, which are mapped in the I/O area, their values will be overwritten again with the next cycle. Therefore, data mapped in the I/O area should not be written via the Acyclic channel! Via the *Acyclic channel* you can perform acyclic read and write commands. For this in the input/output area of the motion module a data area for the acyclic communication has been implemented. This area includes 8 bytes output and 8 bytes input data. These have the following assignment: | Request | | Response | | | |--|------------|--|--|--| | Output data | | Input data | | | | Byte 0: CMD - Command Byte 1: SUBIDX - Subindex Byte 2: IDX0 - Index (low byte) Byte 3: IDX1 -
Index (high byte) Byte 4: DATA0 - Data (low byte) Byte 5: DATA1 - Data Byte 6: DATA2 - Data Byte 7: DATA3 - Data (high byte) | → ← | Byte 0: STATUS - Status Byte 1: SUBIDX - Subindex Byte 2: IDX0 - Index (low byte) Byte 3: IDX1 - Index (high byte) Byte 4: DATA0 - Data (low byte) Byte 5: DATA1 - Data Byte 6: DATA2 - Data Byte 7: DATA3 - Data (high byte) | | | | IDLE → Request → Response → IDLE | | | | | Acyclic channel #### CMD - Command | Code | Name | Description | |------|------------|--| | 0x11 | READ_ONCE | Reading a data object | | | | With this command you can request the data once after the command has been recognized. | | 0x21 | WRITE_ONCE | Writing a data object | | | | With this command data are written only once after the command has been recognized. | SUBIDX - Subindex Subindex in the object dictionary IDX0/IDX1 - Index Index in the object dictionary **DATA0 ... DATA3 - Data**Data which are to be transmitted. #### STATUS - Status | Code | Name | Description | |-------|-----------------|---| | 0x00 | IDLE | Idle - waiting for commands | | 0x14 | READ_ONCE | Command READ_ONCE has been recognized, data are valid. | | 0x24 | WRITE_ONCE | Command WRITE_ONCE has been recognized, data were accepted. | | 0x81: | READ_NOT_EXIST | Error - read access - data do not exist | | | | Command rejected! | | 0x91 | WRITE_NOT_EXIST | Error - write access - data do not exist | | | | Command rejected! | | 0x92 | WRITE_RNG_ERR | Error - write access - data out of range | | | | Command rejected! | | 0x93 | WRITE_RDO_ERR | Error - write access - data can only be read | | | | Command rejected! | | 0x94 | WRITE_WPR_ERR | Error - write access - data are write protected | | | | Command rejected! | | 0x99 | ACYC_COM_ERR | Error during acyclic communication | | | | Command rejected! | For the *SPEED7 Studio* and the Siemens SIMATIC Manager there is the block FB 320 ACYC_RW for simplified access available. More information about the usage of this block may be found in the manual "SPEED7 Operation List". Parameter data ## 4.13 Parameter data DS - Record set for access via CPU, PROFIBUS and PROFINET IX - Index for access via CANopen SX - Subindex for access via EtherCAT with Index 3100h + EtherCAT-Slot More can be found in the according manual of your bus coupler. | Name | Bytes | Function | Default | DS | IX | SX | |---|-------|-----------------------------------|---------|-----|-------------|-----| | DIAG_EN | 1 | Diagnostic interrupt ¹ | 00h | 00h | 3100h | 01h | | IDX_1 | 2 | Universal parameter 1: Index | 00h | 80h | 3101h 3102h | 02h | | SUBIDX_1 | 2 | Universal parameter 1: Subindex | 00h | 80h | 3103h 3104h | 03h | | DATA_1 | 4 | Universal parameter 1: Value | 00h | 80h | 3105h 3108h | 04h | | IDX_2 | 2 | Universal parameter 2: Index | 00h | 81h | 3109h 310Ah | 05h | | SUBIDX_2 | 2 | Universal parameter 2: Subindex | 00h | 81h | 310Bh 310Ch | 06h | | DATA_2 | 4 | Universal parameter 2: Value | 00h | 81h | 310Dh 3110h | 07h | | IDX_3 | 2 | Universal parameter 3: Index | 00h | 82h | 3111h 3112h | 08h | | SUBIDX_3 | 2 | Universal parameter 3: Subindex | 00h | 82h | 3113h 3114h | 09h | | DATA_3 | 4 | Universal parameter 3: Value | 00h | 82h | 3115h 3118h | 0Ah | | IDX_4 | 2 | Universal parameter 4: Index | 00h | 83h | 3119h 311Ah | 0Bh | | SUBIDX_4 | 2 | Universal parameter 4: Subindex | 00h | 83h | 311Bh 311Ch | 0Ch | | DATA_4 | 4 | Universal parameter 4: Value | 00h | 83h | 311Dh 3120h | 0Dh | | IDX_5 | 2 | Universal parameter 5: Index | 00h | 84h | 3121h 3122h | 0Eh | | SUBIDX_5 | 2 | Universal parameter 5: Subindex | 00h | 84h | 3123h 3124h | 0Fh | | DATA_5 | 4 | Universal parameter 5: Value | 00h | 84h | 3125h 3128h | 10h | | IDX_6 | 2 | Universal parameter 6: Index | 00h | 85h | 3129h 312Ah | 11h | | SUBIDX_6 | 2 | Universal parameter 6: Subindex | 00h | 85h | 312Bh 312Ch | 12h | | DATA_6 | 4 | Universal parameter 6: Value | 00h | 85h | 312Dh 3130h | 13h | | IDX_7 | 2 | Universal parameter 7: Index | 00h | 86h | 3131h 3132h | 14h | | SUBIDX_7 | 2 | Universal parameter 7: Subindex | 00h | 86h | 3133h 3134h | 15h | | DATA_7 | 4 | Universal parameter 7: Value | 00h | 86h | 3135h 3138h | 16h | | 1) This record set may only be transferred at STOP state. | | | | | | | For the *SPEED7 Studio* and the Siemens SIMATIC Manager there is the block FB 321 - ACYC_DS for simplified access available. More information about the usage of this block may be found in the manual "SPEED7 Operation List". Monitoring and error reaction > Overview ## 4.14 Scaling and units #### Scaling and units ■ As a "normalization" for position, velocity and acceleration, you can specify a *Gear factor '0x8180-02 - Gear factor'...page 126* in the object dictionary. This gear factor represents *units* in thousands with the rotary axis makes exactly one revolution. #### Direction of rotation Positive direction of rotation is turning to the right (clockwise) with view towards the motor flange. #### Current unit - All currents are normalized to the unit [mA]. - [User] is a user-defined unit, which depends on the Gear factor. '0x8180-02 Gear factor'...page 126 ## 4.15 Monitoring and error reaction #### 4.15.1 Overview #### General The System SLIO motion module has monitor functions. The monitoring works in 3 steps: - 1. Limitation - Status: '0x8100-04 Limit active bits'...page 123 - Limitations within the normal operating range, adapted to the respective application. - 2. Warning - Status: '0x8100-05 Warnings active bits'...page 124 - The permissible operating range is almost exhausted and the system is about to initiate a fault response. - 3. Error - Status: '0x8100-06 Error active bits'...page 125 - The permissible operating range is exceeded and a configurable fault response is automatically triggered. - Error messages are also shown via '0x8100-02 Status word'...page 121. #### CAUTION Please consider that incorrectly set monitoring functions can cause damages to persons and materials! #### Voltage monitoring The voltage of DC 24V module power supply and the internal control voltage of the output stages are monitored. If the voltage over or under runs the limit values, a warning or error is reported by '0x8100-02 - Status word'...page 121. On an error, there is an error reaction of the motion module, which can be configured. #### Temperature monitoring The motion module has an internal temperature monitoring of the μ -controller and the power stage. Via the object dictionary limit temperatures can be defined. If the temperature over or under runs the limit values, there is an error reaction of the motion module, which can be configured. Monitoring and error reaction > Overview #### **Current monitoring** The by the power stages driven current '0x8600-03 - Current target value'...page 140 in the windings of the motor is monitored. The target current is limited to a configurable value '0x8600-04 - Current limit positive direction'...page 141 respectively '0x8600-05 - Current limit negative direction'...page 141 and with active limitation reported via '0x8100-02 - Status word'...page 121. If the actual current exceeds the permissible motor current '0x8C00-04 - Motor max. current'...page 147, there is an error reaction of the motion module, which can be configured. #### Position monitoring The motion module monitors the traversing of a positioning. When specifying a target position, with exceeding a configurable limit in positive or negative direction of movement, the target position changed to a limit value. You will get a feedback on an active limitation via '0x8100-02 - Status word'...page 121. Exceeds the actual position one of the configurable values in positive or negative direction of movement, this is also reported via '0x8100-02 - Status word'...page 121. The module monitors the internally generated position set point and actual value. This deviation is called "Lag error". If the lag error exceeds the configurable limit value, there is an error reaction of the motion module, which can be configured. #### Velocity monitoring The motion module monitors the velocity. The set velocity is limited to a configurable value and with active limitation reported via '0x8100-02 - Status word'...page 121. When the value of the actual velocity exceeds the maximum permissible motor velocity '0x8C00-07 - Motor max. velocity'...page 147, this is reported via the '0x8100-02 - Status word'...page 121 and there is an error reaction of the motion module, which can be configured. #### **Error reaction** The following errors can trigger an error reaction: - Error max. velocity exceeded '0x8500-02 - Velocity control actual value'...page 137 > '0x8C00-07 - Motor max. velocity'...page 147 - Error lag error '0x8480-10 - Lag error'...page 135 > '0x8480-12 - Lag error error'...page 136 - Temperature error μ-Controller '0x8780-02 - Temperature μ-Controller actual value'...page 146 > '0x8780-04 - Temperature μ-Controller error level'...page 146 - Temperature error power stage motion module '0x8780-07 Temperature power stage actual value'...page 146 > '0x8780-09 Temperature power stage error level'...page 147 - Error system communication timeout '0x6100-10 System message timeout maximum'...page 116 - Error command output disable (BASP) On error, the motion module starts an error reaction. The error reaction can be configured. Here you have the following possibilities: - Immediate state change to 'Switch on disabled'. - Break with quick stop deceleration '0x8580-03 Deceleration quick stop value'...page 139 and subsequent state change to 'Switch on disabled'. Monitoring and error reaction > Monitoring #### 4.15.2 Monitoring #### Access to 2 drives For each
drive, there is an object dictionary whose structures are identical. Please note that the descriptions always relate to drive 1, unless otherwise noted. To access drive 2, you have to add 0x1000 to the corresponding object. - Object dictionary drive 1: 0x8000 ... 0x8FFF - Object dictionary drive 2: 0x9000 ... 0x9FFF #### **Monitoring limitation** Monitoring and error reaction > Monitoring #### Monitoring warning #### Monitoring errors #### Error status - Monitoring errors Monitoring and error reaction > Monitoring #### Error response - error reaction Diagnostics and interrupt ## 4.16 Diagnostics and interrupt #### Diagnostic data Via the parametrization you may activate a diagnostic interrupt for the module. With a diagnostics interrupt the module serves for diagnostics data for diagnostic interrupt_{incoming}. As soon as the reason for releasing a diagnostic interrupt is no longer present, the diagnostic interrupt_{going} automatically takes place. Within this time window (1. diagnostic interrupt_{incoming} until last diagnostic interrupt_{going}) the MF-LED of the module is on. - DS Record set for access via CPU, PROFIBUS and PROFINET. The access happens by DS 01h. Additionally the first 4 bytes may be accessed by DS 00h. - IX Index for access via CANopen. The access happens by IX 2F01h. Additionally the first 4 bytes may be accessed by IX 2F00h. - SX Subindex for access via EtherCAT with Index 5005h. More can be found in the according manual of your bus coupler. | Name | Bytes | Function | Default | DS | IX | SX | |------------------|-------|-------------------------------------|---------|-----|-------|---------| | ERR_A | 1 | Diagnostic | 00h | 01h | 2F01h | 02h | | MODTYP | 1 | Module information | 18h | | | 03h | | ERR_C | 1 | reserved | 00h | | | 04h | | ERR_D | 1 | reserved | 00h | | | 05h | | CHTYP | 1 | Channel type | 72h | | | 06h | | NUMBIT | 1 | Number diagnostics bits per channel | 08h | | | 07h | | NUMCH | 1 | Number channels of the module | 04h | | | 08h | | CHERR | 1 | Channel error | 00h | | | 09h | | CH0ERR | 1 | Channel-specific error | 00h | | | 0Ah | | CH1ERR | 1 | Channel-specific error | 00h | | | 0Bh | | CH2ERR | 1 | Channel-specific error | 00h | | | 0Ch | | CH3ERR | 1 | Channel-specific error | 00h | | | 0Dh | | CH4ERR
CH7ERR | 4 | reserved | 00h | | | 0Eh 11h | | DIAG_US | 4 | μs ticker (32bit) | 00h | | | 13h | #### ERR_A Diagnostic | Byte | Bit 7 0 | |------|--| | 0 | ■ Bit 0: set at module failure | | | ■ Bit 1: set at internal error | | | ■ Bit 2: set at external error | | | ■ Bit 3: set at channel error | | | ■ Bit 6 4: reserved | | | ■ Bit 7: set at error in parametrization | Diagnostics and interrupt | MODT | YP | Mode | ule | |---------|------|------|-----| | informa | atio | n | | | Byte | Bit 7 0 | |------|---| | 0 | ■ Bit 3 0: Module class | | | 1000b: Function module | | | ■ Bit 4: set at channel information present | | | ■ Bit 7 5: reserved | ## CHTYP Channel type | Byte | Bit 7 0 | |------|---| | 0 | ■ Bit 6 0: Channel type | | | 72h: Digital output | | | ■ Bit 7: 0 (fix) | ## **NUMBIT** Diagnostic bits | Byte | Bit 7 0 | |------|--| | 0 | Number of diagnostic bits per channel (here 08h) | ## **NUMCH Channels** | Byte | Bit 7 0 | |------|---| | 0 | Number of channels of a module (here 04h) | ## **CHERR - Channel error** | Byte | Bit 7 0 | |------|---| | 0 | Bit 0: set on error output I/O1 Bit 1: set on error output I/O2 Bit 2: set on error output I/O3 Bit 3: set on error output I/O4 Bit 7 4: reserved | ## CH0ERR...CH3ERR channel specific | Byte | Bit 7 0 | |------|------------------------------| | 0 | Diagnostics interrupt due to | | | ■ Bit 2 0: reserved | | | ■ Bit 3: Short circuit | | | ■ Bit 7 4: reserved | ## DIAG_US µs ticker | Byte | Bit 7 0 | |------|---| | 0 3 | Value µs ticker at the moment of the diagnostic | ## ERR_C/D, CH4ERR ... CH7ERR reserved | Byte | Bit 7 0 | |------|----------| | 0 | reserved | Use ## 5 Object dictionary #### 5.1 Use #### Addressing The System SLIO motion module provides its data, such as "Profiling target position" via an object dictionary. In this object dictionary the objects are organized and addressable a unique number consisting of *Index* and *Subindex*. The number is specified as follows: | 0x | Index (hexadecimal) | - | Subindex (decimal) | |---------|---------------------|---|--------------------| | Example | e: 0x8400-03 | | | To improve the structure and for expansion at System SLIO Motion Module another object numbering (index-assignment) is used besides the standard CiA 402. #### Index area By separating into index and subindex a grouping is possible. The individual areas are divided into groups of related objects. With the System SLIO motion module this object directory is structured as follows: | Index area | Content | |---------------|---| | 0x1000 0x6FFF | General data and system data | | 0x7000 0x7FFF | Data of the digital input and output part | | 0x8000 0x8FFF | Data drive 1 | | 0x9000 0x9FFF | Data drive 2 | Each object has a subindex 0. Calling an object with subindex 0, the number of available subindexes of the corresponding object is returned. In the manual, the index ranges of drive 1 (0x8000 ... 0x8FFF) are described. For drive 2 this corresponds to the index range 0x9000 ... 0x9FFF. # Accessing the object dictionary The communication takes place via the I/O area. The main data of the object dictionary are mapped into the I/O area. 'In-/Output area'...page 97 Included in the mapping is also the area 'Acyclic channel'...page 99 through which you can acyclically access the objects of the motion module. With the acyclic access, any access to the object dictionary is acknowledged by the motion module. The mapping cannot be changed. Please note if you write via the Acyclic channel to objects, which are mapped in the I/O area, their values will be overwritten again with the next cycle. Therefore, data mapped in the I/O area should not be written via the Acyclic channel! Objects > Overview #### 5.2 **Objects** #### 5.2.1 Overview ### Access to 2 drives For each drive, there is an object dictionary whose structures are identical. Please note that the descriptions always relate to drive 1, unless otherwise noted. To access drive 2, you have to add 0x1000 to the corresponding object. - Object dictionary drive 1: 0x8000 ... 0x8FFF - Object dictionary drive 2: 0x9000 ... 0x9FFF #### Explanation of the elements Explanation of the elements Index-Sub - Index and subindex Sx - Data type SIGNEDx Ux - Data type UNSIGNEDx STG - Data type STRING RW - Temperature in degree celsius (°C) [degC] - Read- write access - Increment - pulse of an encoder 'Encoder - signal evaluation'...page 62 [inc] - The unit [User] is a user defined unit, which can be set via '0x8180-02 - Gear [User] factor'...page 126. - Object, which is mapped in the 'In-/Output area'...page 97. If you write via the Acyclic channel to this object, the value is overwritten with the next cycle. 'Acyclic channel'...page 99 - Object, which can be written in all states of the state machine. Otherwise objects can only be written in the state 'Switch on disabled'. 'Accessing the state machine'...page 68 'Passwords and security - 0x1100'...page 115 ### Available objects ``` '0x1000-00 - Device type'...page 113 '0x1008-00 - Manufacturer device name'...page 114 '0x100A-00 - Manufacturer software version'...page 114 '0x1018-00 - Product - number of entries'...page 114 '0x1018-02 - Product ID'...page 114 '0x1018-03 - Revision number'...page 114 '0x1018-04 - Serial number'...page 115 '0x1018-05 - Module category'...page 115 '0x1100-00 - Passwords and security - number of entries'...page 115 '0x1100-01 - Password'...page 115 '0x6100-00 - System command - number of entries'...page 115 '0x6100-10 - System message timeout maximum'...page 116 '0x7100-00 - Digital inputs - number of entries'...page 116 ``` Objects > Overview ``` '0x7100-01...04 - Digital input configuration I/O1...I/O4'...page 116 '0x7100-05 - Digital input states I/O1...I/O4'...page 117 '0x7200-00 - Digital outputs - number of entries'...page 117 '0x7200-01...04 - Digital output configuration I/O1...I/O4'...page 118 '0x7200-05 - Digital output states I/O1...I/O4 actual states'...page 118 '0x7200-06 - Digital output states I/O1...I/O4 requested states'...page 119 '0x8100-00 - Control drive - number of entries'...page 119 '0x8100-01 - Control word'...page 120 '0x8100-02 - Status word'...page 121 '0x8100-03 - Error code'...page 122 '0x8100-04 - Limit active bits'...page 123 '0x8100-05 - Warnings active bits'...page 124 '0x8100-06 - Error active bits'...page 125 '0x8180-00 - Configure drive - number of entries'...page 126 '0x8180-02 - Gear factor'...page 126 '0x8200-00 - Options - number of entries'...page 126 '0x8200-01 - Configuration quick stop'...page 127 '0x8200-05 - Configuration fault reaction'...page 127 '0x8280-00 - Operating mode - number of entries'...page 127 '0x8280-01 - Operating mode requested'...page 128 '0x8280-02 - Operating mode actual'...page 128 '0x8300-00 - Homing - number of entries'...page 129 '0x8300-02 - Homing method'...page 129 '0x8300-03 - Homing digital input I/O1...I/O4'...page 129 '0x8300-04 - Homing digital input active polarity I/O1...I/O4'...page 130 '0x8300-05 - Homing target position'...page 130 '0x8300-06 - Homing velocity V1'...page 130 '0x8300-07 - Homing velocity V2'...page 131 '0x8300-08 -
Homing acceleration'...page 131 '0x8300-09 - Homing deceleration'...page 131 '0x8300-10 - Homing offset value'...page 131 '0x8400-00 - Positioning profile - number of entries'...page 132 '0x8400-02 - Positioning profile target position'...page 132 '0x8400-03 - Positioning profile target velocity'...page 132 '0x8400-04 - Positioning profile target acceleration'...page 133 '0x8400-05 - Positioning profile target deceleration'...page 133 '0x8480-00 - Positions and limits - number of entries'...page 133 '0x8480-02 - Position actual value'...page 133 '0x8480-03 - Target position'...page 133 '0x8480-05 - Software position limit positive direction'...page 134 '0x8480-06 - Software position limit negative direction'...page 134 ``` Objects > Overview ``` '0x8480-07 - Range limit positive direction'...page 134 '0x8480-08 - Range limit negative direction'...page 135 '0x8480-09 - In-position window'...page 135 '0x8480-10 - Lag error'...page 135 '0x8480-11 - Lag error warning'...page 135 '0x8480-12 - Lag error error'...page 136 '0x8480-13 - Position control P-part'...page 136 '0x8480-14 - Position control I-part'...page 136 '0x8480-15 - Position control D-part'...page 136 '0x8480-16 - Position control shift factor'...page 136 '0x8500-00 - Velocity - number of entries'...page 136 '0x8500-01 - Velocity control configuration'...page 137 '0x8500-02 - Velocity control actual value'...page 137 '0x8500-03 - Velocity control target value'...page 137 '0x8500-04 - Velocity control limit positive direction'...page 137 '0x8500-05 - Velocity control limit negative direction'...page 138 '0x8500-06 - Velocity control range for torque limit'...page 138 '0x8500-07 - Velocity control limit type for torque mode'...page 138 '0x8500-11 - Velocity control P-part'...page 138 '0x8500-12 - Velocity control I-part'...page 139 '0x8500-13 - Velocity control D-part'...page 139 '0x8580-00 - Acceleration and deceleration - number entries'...page 139 '0x8580-02 - Acceleration/Deceleration actual value'...page 139 '0x8580-03 - Deceleration quick stop value'...page 139 '0x8580-04 - Acceleration limit'...page 140 '0x8580-06 - Deceleration limit'...page 140 '0x8600-00 - CUR current number of entries '...page 140 '0x8600-02 - Current actual value'...page 140 '0x8600-03 - Current target value'...page 140 '0x8600-04 - Current limit positive direction'...page 141 '0x8600-05 - Current limit negative direction'...page 141 '0x8600-06 - Current control P-part'...page 141 '0x8600-07 - Current control I-part'...page 141 '0x8600-09 - Current control filter factor '...page 141 '0x8600-10 - Current actual value winding A'...page 142 '0x8600-12 - Current target value winding A'...page 142 '0x8600-14 - Current offset value winding A'...page 142 '0x8600-16 - Current voltage ratio winding A'...page 143 '0x8680-00 - Voltages - number of entries'...page 143 '0x8680-02 - Power section supply voltage actual value'...page 143 '0x8680-04 - Power section supply voltage min. warning level'...page 144 ``` Objects > Information about the product - 0x1000...0x1018 '0x8680-05 - Power section supply voltage max. warning level'...page 144 '0x8680-06 - Power section supply voltage min. error level'...page 144 '0x8680-07 - Power section supply voltage max. error level'...page 144 '0x8680-08 - Control voltage power stage actual value'...page 144 '0x8680-10 - Control voltage power stage min. warning level'...page 145 '0x8680-11 - Control voltage power stage max. warning level'...page 145 '0x8680-12 - Control voltage power stage min. error level'...page 145 '0x8680-13 - Control voltage power stage max. error level'...page 145 '0x8780-00 - Temperatures - number of entries'...page 145 '0x8780-02 - Temperature μ-Controller actual value'...page 146 '0x8780-03 - Temperature μ-Controller warning level'...page 146 '0x8780-04 - Temperature μ-Controller error level'...page 146 '0x8780-07 - Temperature power stage actual value'...page 146 '0x8780-08 - Temperature power stage warning level'...page 146 '0x8780-09 -Temperature power stage error level'...page 147 '0x8C00-00 - Motor data - number of entries'...page 147 '0x8C00-04 - Motor max. current'...page 147 '0x8C00-06 - Motor nominal velocity'...page 147 '0x8C00-07 - Motor max. velocity'...page 147 '0x8C00-09 - Motor velocity constant'...page 148 '0x8C00-10 - Motor phase resistance'...page 148 '0x8F00-00 - Encoder - number of entries'...page 148 '0x8F00-01 - Encoder feedback configuration'...page 148 '0x8F00-02 - Encoder actual value'...page 149 '0x8F00-03 - Encoder resolution'...page 149 ### 5.2.2 Information about the product - 0x1000...0x1018 #### 0x1000-00 - Device type | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|----|---------|----------------|------|-------------|--|--|--| | 0x1000-00 | U32 | R | 0 | 0
0xFFFFFFF | | Device type | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | ### Here according to CiA 402 the device type is shown. | MSB | | LSB | | | | |------------------------|-------------|-----------------------|--|--|--| | 31 2 | 23 16 | 15 0 | | | | | Additional information | | Device profile number | | | | | Mode bit = $0x00$ | Type = 0x40 | 0x0192 | | | | Objects > Information about the product - 0x1000...0x1018 #### 0x1008-00 - Manufacturer device name | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|----------------|------|--------------------------|--|--| | 0x1008-00 | U32 | R | 0 | 0
0xFFFFFFF | | Manufacturer device name | | | | 'Explanation of the elements'page 110 | | | | | | | | | Here you can find the name of the motion module ASCII coded: 0x44434D31: 'DCM1' #### 0x100A-00 - Manufacturer software version | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|--------------------|----------------|------|-------------------------------|--|--| | 0x100A-00 | U32 | R | current
version | 0
0xFFFFFFF | | Manufacturer software version | | | | 'Explanation of the elements'page 110 | | | | | | | | | Here you can find the software version of the motion module 8bit coded e.g. 0x01050300: V1.5.3.0 #### 0x1018-00 - Product - number of entries | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-------------|------|-----------------------------|--|--| | 0x1018-00 | U08 | R | 5 | 5 | | Product - number of entries | | | | 'Explanation of the elements'page 110 | | | | | | | | | ### 0x1018-02 - Product ID | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |----------------|---------------------------------------|----|------------|----------------|------|-------------|--|--|--| | 0x1018-02 | U32 | R | 0x534C494F | 0
0xFFFFFFF | | Product ID | | | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | | | Here according to CiA 402 the product ID of the motion module can be found: 0x534C494F #### 0x1018-03 - Revision number | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|----------------|------|-----------------|--|--| | 0x1018-03 | U32 | R | 0 | 0
0xFFFFFFF | | Revision number | | | | 'Explanation of the elements'page 110 | | | | | | | | | Here according to CiA 402 the revision number of the module can be found. Currently this object is not used and returns 0. Objects > System command - 0x6100 #### 0x1018-04 - Serial number | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|----------------|------|---------------|--|--| | 0x1018-04 | U32 | R | 0 | 0
0xFFFFFFF | | Serial number | | | | 'Explanation of the elements'page 110 | | | | | | | | | Here according to CiA 402 the serial number of the module can be found. Currently this object is not used and returns 0. ### 0x1018-05 - Module category | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | | |----------------|---------------------------------------|----|---------|-------------|------|-----------------|--|--|--|--| | 0x1018-05 | U32 | R | 0 | 0 200 | | Module category | | | | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | | | | Here according to CiA 402 you can find the module category of the motion module: 0x31: DCM ### 5.2.3 Passwords and security - 0x1100 ### 0x1100-00 - Passwords and security - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |---------------------------------------|------|----|---------|-------------|------|--|--|--|--| | 0x1100-00 | U08 | R | 2 | 2 | | Passwords and security - number of entries | | | | | 'Explanation of the elements'page 110 | | | | | | | | | | #### 0x1100-01 - Password | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |----------------|---------------------------------------|-------|---------|----------------|------|-------------|--| | 0x1100-01 | U32 | R/W** | 0 | 0
0xFFFFFFF | | Password | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | With this object you can enable the password, which allows to write objects in all states of the state machine. Otherwise objects can only be written in the state 'Switch on disabled'. The password is: 0xABCDABCD and cannot be changed. 'Accessing the state machine'...page 68 ### 5.2.4 System command - 0x6100 ### 0x6100-00 - System command - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |----------------|---------------------------------------|----|---------|-------------|------|------------------------------------|--| | 0x6100-00 | U08 | R | 17 | 17 | | System command - number of entries |
 | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | Objects > Digital inputs I/O1...I/O4 - 0x7100 ### 0x6100-10 - System message timeout maximum | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |-----------------|---------------------------------------|-----|---------|----------------|------|--------------------------------|--| | 0x6100-10 | U32 | R/W | 0 | 0
0xFFFFFFF | [mS] | System message timeout maximum | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | With this object, you can enable the monitoring of the cyclic communication to the System SLIO bus and thus to the fieldbus. If there is no communication within the specified time in ms, the motion module enters the error state. Should the application require a cyclic communication with the motion module but the monitoring of the cycle can not be ensured on the side of the fieldbus coupler or CPU, by means of this object a monitoring time should be entered. By default, no monitoring is active. ### 5.2.5 Digital inputs I/O1...I/O4 - 0x7100 #### 0x7100-00 - Digital inputs - number of entries | Index-Sub | Type | RW | Default | Value range | Unit | Description | |------------------------------|-------------|---------|---------|-------------|------|------------------------------------| | 0x7100-00 | U08 | R | 7 | 7 | | Digital inputs - number of entries | | 'Explanation of | of the elei | ments'p | age 110 | | | | | 'Deployment I/O1I/O4'page 92 | | | | | | | #### 0x7100-01...04 - Digital input configuration I/O1...I/O4 | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |-----------------|---------------------------------------|-------|---------|-------------|------|----------------------------------|--| | 0x7100-01 | U08 | R/W** | 1 | 0 1 | | Digital input configuration I/O1 | | | 0x7100-02 | U08 | R/W** | 1 | 0 1 | | Digital input configuration I/O2 | | | 0x7100-03 | U08 | R/W** | 1 | 0 1 | | Digital input configuration I/O3 | | | 0x7100-04 | U08 | R/W** | 1 | 0 1 | | Digital input configuration I/O4 | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | With these objects, the four digital inputs/outputs I/O1...I/O4 are configured as inputs. - 0: The I/Ox is used as digital output - DC 24V - 500 mA - High-side (source) - 1: The I/Ox is used as digital input - DC 24V - IEC 61131-2 Typ 3 - High-side (sink) - The configuration as encoder happens via '0x8F00-01 Encoder feedback configuration'...page 148 - The inputs can always be read, so its configuration is independent of the configuration as outputs (object 0x7200-01 ... -04). - If a digital input/output is defined as output via object 0x7200, it can be read via the cyclic data Status DO. It is the really pending state at the digital driver part and not set point value, generated by the cyclic data Status DI or system. Objects > Digital output I/O1...I/O4 - 0x7200 ### 0x7100-05 - Digital input states I/O1...I/O4 | Index-Sub | Туре | RW | Default | Value range | Unit | Description | |-----------------|--|----|---------|-------------|------|-------------------------------| | 0x7100-05* | U08 | R | 0 | 0 0xFF | | Digital input states I/O1I/O4 | | 'Evolunation of | 'Explanation of the elements' nage 110 | | | | | | This object contains the current values of the digital inputs I/O1...I/O4. They also can be found in the I/O area. Please note if you write via the Acyclic channel to objects, which are mapped in the I/O area, their values will be overwritten again with the next cycle. Therefore, data mapped in the I/O area should not be written via the Acyclic channel! Bit 3 ... 0 | 3 | 2 | 1 | 0 | Description | |---|---|---|---|---------------------------| | X | Х | X | 0 | Input I/O1 has signal "0" | | X | x | x | 1 | Input I/O1 has signal "1" | | X | х | 0 | x | Input I/O2 has signal "0" | | X | Х | 1 | X | Input I/O2 has signal "1" | | X | 0 | x | x | Input I/O3 has signal "0" | | X | 1 | x | x | Input I/O3 has signal "1" | | 0 | х | Х | x | Input I/O4 has signal "0" | | 1 | х | х | х | Input I/O4 has signal "1" | ### 5.2.6 Digital output I/O1...I/O4 - 0x7200 ### 0x7200-00 - Digital outputs - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | |-----------------|------------------------------|---------|---------|-------------|------|-------------------------------------| | 0x7200-00 | U08 | R | 6 | 6 | | Digital outputs - number of entries | | 'Explanation of | of the elen | nents'p | age 110 | | | | | 'Deployment I | 'Deployment I/O1I/O4'page 92 | | | | | | Objects > Digital output I/O1...I/O4 - 0x7200 #### 0x7200-01...04 - Digital output configuration I/O1...I/O4 | Index-Sub | Туре | RW | Default | Value range | Unit | Description | |--------------|--|-------|---------|-------------|------|-----------------------------------| | 0x7200-01 | U08 | R/W** | 0 | 0 1 | | Digital output configuration I/O1 | | 0x7200-02 | U08 | R/W** | 0 | 0 1 | | Digital output configuration I/O2 | | 0x7200-03 | U08 | R/W** | 0 | 0 1 | | Digital output configuration I/O3 | | 0x7200-04 | U08 | R/W** | 0 | 0 1 | | Digital output configuration I/O4 | | 'Explanation | 'Explanation of the elements' page 110 | | | | | | With these objects, the four digital inputs/outputs I/O1...I/O4 are configured as outputs. If a digital input/output is defined as output, it can be read via the cyclic data. This is the really pending state at the digital driver part. | Value | Description | |-------|---| | 0 | The output is de-activated. | | 1 | The output is activated and can be controlled by the cyclic data '0x7200-06 - Digital output states I/O1I/O4 requested states'page 119. | #### 0x7200-05 - Digital output states I/O1...I/O4 actual states | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |-----------------|---------------------------------------|----|---------|-------------|------|--|--| | 0x7200-05* | U08 | R | 0 | 0 0xFF | | Digital output states I/O1I/O4 actual states | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | This object contains the current values of the digital outputs. They also can be found in the I/O area. Please note if you write via the Acyclic channel to objects, which are mapped in the I/O area, their values will be overwritten again with the next cycle. Therefore, data mapped in the I/O area should not be written via the Acyclic channel! Bit 3 ... 0 | 3 | 2 | 1 | 0 | Description | |---|---|---|---|---------------------| | x | X | x | 0 | I/O1 has signal "0" | | x | X | x | 1 | I/O1 has signal "1" | | X | X | 0 | X | I/O2 has signal "0" | | x | X | 1 | x | I/O2 has signal "1" | | x | 0 | X | X | I/O3 has signal "0" | | x | 1 | x | x | I/O3 has signal "1" | | 0 | x | x | x | I/O4 has signal "0" | | 1 | X | X | X | I/O4 has signal "1" | Objects > Driver command - 0x8100 0x7200-06 - Digital output states I/O1...I/O4 requested states | Index-Sub | Type | RW | Default | Value range | Unit | Description | |-----------------|-------------|---------|---------|-------------|------|---| | 0x7200-06* | U08 | R/W** | 0 | 0 0xFF | | Digital output states I/O1I/O4 requested states | | 'Explanation of | of the eler | ments'p | age 110 | | | | This object contains the set values of the digital outputs I/O1...I/O4. They also can be found in cyclic data in the I/O area. Please note if you write via the Acyclic channel to objects, which are mapped in the I/O area, their values will be overwritten again with the next cycle. Therefore, data mapped in the I/O area should not be written via the Acyclic channel! Bit 3 ... 0 | 3 | 2 | 1 | 0 | Description | |---|---|---|---|----------------------------| | X | x | х | 0 | Output I/O1 has signal "0" | | X | x | x | 1 | Output I/O1 has signal "1" | | X | x | 0 | X | Output I/O2 has signal "0" | | X | x | 1 | x | Output I/O2 has signal "1" | | x | 0 | X | x | Output I/O3 has signal "0" | | X | 1 | x | x | Output I/O3 has signal "1" | | 0 | x | x | X | Output I/O4 has signal "0" | | 1 | х | Х | X | Output I/O4 has signal "1" | ### 5.2.7 Driver command - 0x8100 ### 0x8100-00 - Control drive - number of entries | Index-Sub | Type | RW | Default | Value range | Unit | Description | |-----------------|-------------|---------|---------|-------------|------|-----------------------------------| | 0x8100-00 | U08 | R | 6 | 6 | | Control drive - number of entries | | 'Explanation of | of the eler | ments'p | age 110 | | | | Objects > Driver command - 0x8100 #### 0x8100-01 - Control word | Index-Sub | Туре | RW | Default | Value range | Unit | Description | |------------|------|-------|---------|-------------|------|--------------| | 0x8100-01* | U16 | R/W** | 0 | 0 65535 | | Control word | With the Control word you can change the current state of the motor controller respectively reset all the error bits: - Bit 0: Switch on - Bit 1: Disable voltage - Bit 2: Quick stop - Bit 3: Switch on - Bit 6 ... 4: reserved - Bit 7: Command "Fault reset" - Bit 15 ... 8: reserved 'Explanation of the elements'...page 110 'States'...page 67 #### Bit combinations | 3 | 2 | 1 | 0 | Bit 3 0 - Control drive state | |---------|--------|-------|--------|---| | х | 1 | 1 | 0 | Shutdown | | 0 | 1 | 1 | 1 | Switch on | | 1 | 1 | 1 | 1 | Switch on and enable operation | | Х | X | 0 | х | Disable voltage | | 0 | 1 | 1 | 1 | Disable operation | | 1 | 1 | 1 | 1 | Enable operation | | х | 0 | 1 | х | Quick stop | | | | | | | | 158 | 7 | | 6 | Bit 15 4 - Reset error bits | | reserve | ed 0-3 | 1 res | served | Edge 0-1 resets all error bits in '0x8100-06 - Error active | | 158 | 7 | 6 | Bit 15 4 -
Reset error bits | |----------|-----|----------|--| | reserved | 0→1 | reserved | Edge 0-1 resets all error bits in '0x8100-06 - Error active bits'page 125. | Objects > Driver command - 0x8100 #### 0x8100-02 - Status word | Index-Sub | Type | RW | Default | Value range | Unit | Description | |------------|------|----|---------|-------------|------|-------------| | 0x8100-02* | U16 | R | 0 | 0 65535 | | Status word | 'Explanation of the elements'...page 110 'States'...page 67 Please consider that the data bits are not latched and may need to be temporarily stored for further processing! Bit 7 ... 0 - Control drive state | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | hex | Description | |---|---|---|---|---|---|---|---|------|---| | X | 0 | Х | Х | 0 | 0 | 0 | 0 | 0x00 | State 'Not ready to switch on' | | X | 1 | х | Х | 0 | 0 | 0 | 0 | 0x40 | State 'Switch on disabled' | | X | 0 | 1 | Х | 0 | 0 | 0 | 1 | 0x21 | State 'Ready to switch on' | | Х | 0 | 1 | Х | 0 | 0 | 1 | 1 | 0x23 | State 'Switched on' | | X | 0 | 1 | Х | 0 | 1 | 1 | 1 | 0x27 | State 'Operation enabled' | | Х | 0 | 0 | Х | 0 | 1 | 1 | 1 | 0x07 | State 'Quick stop active' | | Х | 0 | Х | Х | 1 | 1 | 1 | 1 | 0x0F | State 'Fault reaction active' | | Х | 0 | Х | Х | 1 | 0 | 0 | 0 | 0x08 | State 'Error' '0x8100-03 - Error code'page 122 | | 1 | X | X | x | X | X | х | X | 0x80 | A warning has occurred '0x8100-05 - Warnings active bits'page 124 | Bit 15 ... 8 - Operating mode state | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | Description | |----|----|----|----|----|----|---|---|---| | x | Х | х | х | Х | 0 | Х | х | Target position not reached (axis is stopped) | | x | Х | х | х | Х | 1 | Х | х | Target position reached (axis velocity = 0) | | Х | Х | Х | Х | 0 | Х | Х | Х | There is no internal limitation | | X | х | x | x | 1 | X | х | X | There is an internal limitation The type of limitation depends on the operating mode. | Objects > Driver command - 0x8100 #### 0x8100-03 - Error code | Index-Sub | Туре | RW | Default | Value range | Unit | Description | |-----------|------|----|---------|-------------|------|-------------| | 0x8100-03 | U16 | R | 0 | 0 65535 | | Error code | 'Explanation of the elements'...page 110 'Monitoring and error reaction'...page 102 This object shows the most recent error code, which has occurred in the System SLIO motion module. A group message can be obtained from bit 3 in the '0x8100-02 - Status word'...page 121. There are the following error messages: #### **Error** | Code | Description | |--------|---| | 0x2310 | Permanent internal short circuit | | | '0x8600-10 - Current actual value winding A'page 142 is greater than '0x8C00-04 - Motor max. current'page 147 | | | '0x8100-06 - Error active bits'page 125 Bit: 0 | | 0x2340 | Short-circuit in motor | | | 'Connections'page 51 | | | '0x8100-06 - Error active bits'page 125 Bit: 1 | | 0x3210 | Power section supply overvoltage | | | '0x8680-07 - Power section supply voltage max. error level'page 144 | | | '0x8100-06 - Error active bits'page 125 Bit: 17 | | 0x3220 | Power section supply reduced voltage | | | '0x8680-12 - Control voltage power stage min. error level'page 145 | | | '0x8100-06 - Error active bits'page 125 Bit: 16 | | 0x4310 | Temperature μ-controller exceeded | | | '0x8780-04 - Temperature μ-Controller error level'page 146 | | | '0x8100-06 - Error active bits'page 125 Bit: 12, 13 | | 0x5115 | Control voltage power stage exceeds the range of values. | | | '0x8680-12 - Control voltage power stage min. error level'page 145 | | | '0x8680-13 - Control voltage power stage max. error level'page 145 | | | '0x8100-06 - Error active bits'page 125 Bit: 18, 19 | | 0x8400 | Error in velocity control - please check you parameters. | | | '0x8100-06 - Error active bits'page 125 Bit: 4 | | 0x8611 | Error in position control - please check you parameters. | | | '0x8100-06 - Error active bits'page 125 Bit: 8 | | 0xF001 | Error encoder feedback control - please check your parameters. | | | 'Encoder - deployment'page 94 | | | '0x8100-06 - Error active bits'page 125 Bit: 20 | | 0xF010 | System communication timeout | | | '0x6100-10 - System message timeout maximum'page 116 | | | '0x8100-06 - Error active bits'page 125 Bit: 22 | Objects > Driver command - 0x8100 | Code | Description | |--------|--| | 0xF011 | Command output disable (BASP) is active. | | | '0x8100-06 - Error active bits'page 125 Bit: 23 | | 0xF020 | Error operation mode is not supported. | | | '0x8280-01 - Operating mode requested'page 128 | | | '0x8100-06 - Error active bits'page 125 Bit: 24 | | 0xF080 | There is an internal error - please contact our support! | | | '0x8100-06 - Error active bits'page 125 Bit: 28 | #### 0x8100-04 - Limit active bits | Index-Sub | Туре | RW | Default | Value range | Unit | Description | |-----------|------|----|---------|----------------|------|-------------------| | 0x8100-04 | U32 | R | 0 | 0
0xFFFFFFF | | Limit active bits | #### 0: de-activated, 1: activated - Bit 0: Limitation current - '0x8600-03 Current target value'...page 140 > '0x8600-04 Current limit positive direction'...page 141 - '0x8600-03 Current target value'...page 140 < '0x8600-05 Current limit negative direction'...page 141 - Bit 3 ... 1: reserved - Bit 4: Limitation velocity - '0x8500-03 Velocity control target value'...page 137 > '0x8500-04 Velocity control limit positive direction'...page 137 - '0x8500-03 Velocity control target value'...page 137 < '0x8500-05 Velocity control limit negative direction'...page 138 - Bit 7 ... 5: reserved - Bit 8: Location of the set point position - 0: Position is out of the permissible limits - 1: Position is within the permissible limits - '0x8400-02 Positioning profile target position'...page 132 > '0x8480-05 Software position limit positive direction'...page 134 - '0x8400-02 Positioning profile target position'...page 132 < '0x8480-06 Software position limit negative direction'...page 134 - '0x8480-03 Target position'...page 133 > '0x8480-05 Software position limit positive direction'...page 134 - '0x8480-03 Target position'...page 133 < '0x8480-06 Software position limit negative direction'...page 134 - Bit 9: Location of the current position - 0: Position is out of the permissible limits - 1: Position is within the permissible limits - '0x8480-02 Position actual value'...page 133 > '0x8480-05 Software position limit positive direction'...page 134 - '0x8480-02 Position actual value'...page 133 < '0x8480-06 Software position limit negative direction'...page 134 - Bit 31 ... 10: reserved 'Explanation of the elements'...page 110 'Monitoring and error reaction'...page 102 Objects > Driver command - 0x8100 ### 0x8100-05 - Warnings active bits | Index-Sub | Туре | RW | Default | Value range | Unit | Description | |-----------|------|----|---------|----------------|------|----------------------| | 0x8100-05 | U32 | R | 0 | 0
0xFFFFFFF | | Warnings active bits | #### 0: de-activated, 1: activated - Bit 7...0: reserved - Bit 8: Warning lag error - '0x8480-10 Lag error'...page 135 > '0x8480-11 Lag error warning'...page 135 - Bit 11...9: reserved - Bit 12: Temperature warning μ-Controller - '0x8780-02 Temperature μ-Controller actual value'...page 146 > '0x8780-03 Temperature μ-Controller warning level'...page 146 - Bit 13: Temperature warning power stage motion module - '0x8780-07 Temperature power stage actual value'...page 146 > '0x8780-08 Temperature power stage warning level'...page 146 - Bit 15, 14: reserved - Bit 16: Warning under-voltage U_{IN} 24V_{DC} - '0x8680-02 Power section supply voltage actual value'...page 143 < '0x8680-04 Power section supply voltage min. warning level'...page 144 - Bit 17: Warning over-voltage U_{IN} 24V_{DC} - '0x8680-02 Power section supply voltage actual value'...page 143 > '0x8680-05 Power section supply voltage max. warning level'...page 144 - Bit 18: Warning under-voltage triggering power stage motion module - '0x8680-08 Control voltage power stage actual value'...page 144 < '0x8680-10 Control voltage power stage min. warning level'...page 145 - Bit 19: Warning over-voltage triggering power stage motion module - '0x8680-08 Control voltage power stage actual value'...page 144 > '0x8680-11 Control voltage power stage max. warning level'...page 145 - Bit 31...20: reserved 'Explanation of the elements'...page 110 'Monitoring and error reaction'...page 102 Objects > Driver command - 0x8100 #### 0x8100-06 - Error active bits | Index-Sub | Туре | RW | Default | Value range | Unit | Description | |-----------|------|----|---------|----------------|------|-------------------| | 0x8100-06 | U32 | R | 0 | 0
0xFFFFFFF | | Error active bits | #### 0: de-activated, 1: activated - Bit 0: Limit current error - '0x8600-10 Current actual value winding A'...page 142 > '0x8C00-04 Motor max. current'...page 147 - Bit 1: Short circuit on the motor (phase current > 4A) - Bit 3, 2: reserved - Bit 4: Error max. velocity exceeded¹ - '0x8500-02 Velocity control actual value'...page 137 > '0x8C00-07 Motor max. velocity'...page 147 - Bit 7...5: reserved - Bit 8: Error lag error¹ - '0x8480-10 Lag error'...page 135 > '0x8480-12 Lag error error'...page 136 - Bit 11...9: reserved - Bit 12: Temperature error µ-controller¹ - '0x8780-02 Temperature μ-Controller actual value'...page 146 > '0x8780-04 Temperature μ-Controller error level'...page 146 - Bit 13: Temperature error power stage motion module¹ - '0x8780-07 Temperature power stage actual value'...page 146 > '0x8780-09 Temperature power stage error level'...page 147 - Bit 15, 14: reserved - Bit 16: Under-voltage U error_{IN} 24V_{DC} -
'0x8680-02 Power section supply voltage actual value'...page 143 < '0x8680-06 Power section supply voltage min. error level'...page 144 - Bit 17: Over-voltage U error_{IN} 24V_{DC} - '0x8680-02 Power section supply voltage actual value'...page 143 > '0x8680-07 Power section supply voltage max. error level'...page 144 - Bit 18: Under-voltage triggering power stage error motion module - '0x8680-08 Control voltage power stage actual value'...page 144 < '0x8680-12 Control voltage power stage min. error level'...page 145 - Bit 19: Over-voltage triggering power stage error motion module - '0x8680-08 Control voltage power stage actual value'...page 144 > '0x8680-13 Control voltage power stage max. error level'...page 145 - Bit 20: Encoder system is not configured or faulty - '0x8F00-01 Encoder feedback configuration'...page 148 is not set to encoder mode (0x01) - Bit 21: reserved - Bit 22: Error system communication timeout¹ - '0x6100-10 System message timeout maximum'...page 116 - Bit 23: Error command output disable (BASP) active¹ - Bit 27 ... 24: reserved - Bit 28: System error - There is an internal error please contact our Yaskawa support! - Bit 31...29: reserved ### 'Explanation of the elements'...page 110 1) Triggers an error reaction 'Monitoring and error reaction'...page 102 Objects > Options - 0x8200 ### 5.2.8 Configure drive - 0x8180 ### 0x8180-00 - Configure drive - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |---------------------------------------|------|----|---------|-------------|------|-------------------------------------|--|--|--| | 0x8180-00 | U08 | R | 3 | 3 | | Configure drive - number of entries | | | | | 'Explanation of the elements'page 110 | | | | | | | | | | #### 0x8180-02 - Gear factor | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-----|----------|--------------------|------|-------------|--|--|--| | 0x8180-02 | U32 | R/W | 10000000 | 800000
16000000 | | Gear factor | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | Gear factor for normalization of position, velocity and acceleration values. The value represents "units" in thousands with the rotary axis makes exactly one revolution. "Units" may thus be regarded as user units such as µm, mm, inch, degree angle and revolutions. - Position - A to be traversed position thus results directly from the specified number of units. - Velocity - The velocity is normalized to unit/s - Acceleration and deceleration - Acceleration and deceleration are normalized to unit/s² ### Example 1: A motor directly drives a toothed disk. Via a toothed belt, a drilling machine is 1:1 coupled. It is to be used with a resolution of 0.0001 U (= 1 unit). In order to drive a speed of 900 U/min, therefore, a value of 150000 must be reported. $$Units = \frac{1U/U}{0.0001U} = 10000 \ 1/U$$ Gear factor = 10000 · 1000 = 10000000 ### Example 2: A motor directly drives a spindle with a pitch of 20 mm/U. It is to be used with a resolution of $10\mu m$ (= 1 unit). In order to traverse a difference in position of $7000\mu m$, 7000 can directly be specified (relative to the previous value). $$Units = \frac{20mm/U}{10\mu m} = 20000 \ 1/U$$ Gear factor = 20000 · 1000 = 20000000 #### 5.2.9 Options - 0x8200 ### 0x8200-00 - Options - number of entries | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |---------------------------------------|------|----|---------|-------------|------|-----------------------------|--|--|--| | 0x8200-00 | U08 | R | 5 | 5 | | Options - number of entries | | | | | 'Explanation of the elements'page 110 | | | | | | | | | | Objects > Operating modes - 0x8280 ### 0x8200-01 - Configuration quick stop | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | | |------------------------|---------------------------------------|-------|---------|-----------------|------|--------------------------|--|--|--|--| | 0x8200-01 | S16 | R/W** | 2 | -32768
32767 | | Configuration quick stop | | | | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | | | | | 'Brake control'page 96 | | | | | | | | | | | The object contains the action to be used at a Quick stop. | Mode | Description | |------|--| | 0 | Instant state change to 'Switch on disabled' | | 1 | reserved | | 2 | Break with quick stop deceleration 0x8580-03 and subsequent state change to 'Switch on disabled' | | 4 | reserved | ### 0x8200-05 - Configuration fault reaction | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|-------------|------|------------------------------|--|--| | 0x8200-05 | S16 | R/W** | 2 | 0 2 | | Configuration fault reaction | | | | 'Explanation of the elements'page 110 | | | | | | | | | The object contains the action to be used on an error of the System SLIO motion module. | Mode | Description | |------|--| | 0 | Instant state change to 'Switch on disabled' | | 1 | reserved | | 2 | Break with 0x8580-03 and subsequent state change to 'Switch on disabled' | ### 5.2.10 Operating modes - 0x8280 ### 0x8280-00 - Operating mode - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |---------------------------------------|------|----|---------|-------------|------|------------------------------------|--|--|--| | 0x8280-00 | U08 | R | 2 | 2 | | Operating mode - number of entries | | | | | 'Explanation of the elements'page 110 | | | | | | | | | | Objects > Operating modes - 0x8280 ### 0x8280-01 - Operating mode requested | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-----|---------|-------------|------|--------------------------|--|--| | 0x8280-01* | S16 | R/W | 0 | -128 127 | | Operating mode requested | | | | 'Explanation of the elements'page 110 | | | | | | | | | With the object 0x8280-01 the mode of the motor controller can be set. The following operating modes are supported: | Value | Description | |-------|---| | 0 | No operating mode | | 1 | 'PtP positioning profile'page 75 | | | ■ The <i>Homing mode</i> can be called during the operation, if you have previously set a homing method via '0x8300-02 - Homing method'…page 129. | | | ■ A change to the <i>Velocity profile</i> is only possible if the state machine is in state 'Switch on disabled'. | | 3 | 'Velocity profile'page 86 | | 4 | reserved | | 6 | 'Homing'page 69 | | 10 | 'Torque control'page 90 | ### 0x8280-02 - Operating mode actual | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|----|---------|-------------|------|-----------------------|--| | 0x8280-02* | S16 | R | 0 | -128 127 | | Operating mode actual | | | 'Explanation of the elements'page 110 | | | | | | | | In object 0x8280-02 the current operating mode of the motor controller can be read. The following values are supported: | Value | Description | | | | | | | |-------|---|--|--|--|--|--|--| | 0 | No operating mode selected | | | | | | | | -1 | Invalid operating mode or operating mode change | | | | | | | | 1 | 'PtP positioning profile'page 75 | | | | | | | | 3 | 'Velocity profile'page 86 | | | | | | | | 4 | reserved | | | | | | | | 6 | 'Homing'page 69 | | | | | | | | 10 | 'Torque control'page 90 | | | | | | | Objects > Homing - 0x8300 ### 5.2.11 Homing - 0x8300 #### 0x8300-00 - Homing - number of entries | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |------------------|---------------------------------------|----|---------|-------------|------|----------------------------|--|--| | 0x8300-00 | U08 | R | 13 | 13 | | Homing - number of entries | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | 'Homing' page 69 | | | | | | | | | ### 0x8300-02 - Homing method | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |-----------------|---------------------------------------|-------|---------|-------------|------|---------------|--|--| | 0x8300-02 | S08 | R/W** | 0 | -128 127 | | Homing method | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | 'Homina'page 69 | | | | | | | | | This object is used to select the homing method. Homing is an initialization drive of an axis, where the correct position is determined by means of an reference signal. For complete configuration of a homing run, all index 0x8300 associated objects are required. #### Supported homing method | Mode | Description | |------|---| | -1 | It is referenced in response to the current limitation. '0x8300-12 - Homing trq mode current'page 131 | | 17 | It is referenced to a switch at the end of the position area (= homing switch). For the evaluation of the reference switch, a digital input of the System SLIO motion module is used. A pulse signal is expected. | | 37 | The current position is used as reference position and the position value is reset to zero. | Please note that neither homing nor other operation modes of System SLIO motion module are monitored by limit switches, which cause a shutdown or stopping when reached. If you wish a surveillance and response, you have to ensure this through separate measures. #### 0x8300-03 - Homing digital
input I/O1...I/O4 | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |--|------|-------|---------|-------------|------|-------------------------------|--| | 0x8300-03 | U08 | R/W** | 0 | 0 4 | | Homing digital input I/O1I/O4 | | | 'Explanation of the elements' nage 110 | | | | | | | | This object sets for homing *Mode 17* the digital input I /O1 ... I /O4 to which the homing switch is connected. Enter here number: - 0: inactive - 1: Input of DIO1 - 2: Input of DIO2 - 3: Input of DIO3 - 4: Input of DIO4 Objects > Homing - 0x8300 #### 0x8300-04 - Homing digital input active polarity I/O1...I/O4 | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|-------------|------|---|--| | 0x8300-04 | U08 | R/W** | 1 | 0 1 | | Homing digital input active polarity I/O1I/O4 | | | 'Explanation of the elements'page 110 | | | | | | | | This object sets for homing *Mode 17* the polarity of the digital input I/O1...I/O4 of the System SLIO motion module. The internal logic of the System SLIO motion module evaluates a pulse signal from the reference switch. Please note in this case, the correct electrical connection! | Value | Description | |-------|---| | 0 | The reference switch triggers a state change 1-0 at the end position. | | 1 | The reference switch triggers a state change 0-1 at the end position. | #### 0x8300-05 - Homing target position | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|---------------------|--------|------------------------|--| | 0x8300-05 | S32 | R/W** | 0 | -8388608
8388607 | [user] | Homing target position | | | 'Explanation of the elements'page 110 | | | | | | | | This object defines the target position for the homing and is signed. If the homing and the mechanical structure are configured correctly, this position should not be reached during homing. It thus serves for: - set a maximum traversing position, if the initial position is not reached - to specify the traversing direction by the sign #### 0x8300-06 - Homing velocity V1 | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|---------------------|--------|--------------------|--| | 0x8300-06 | S32 | R/W** | 0 | -8388608
8388607 | [user] | Homing velocity V1 | | | 'Explanation of the elements'page 110 | | | | | | | | This object specifies the search speed for traversing to the initial position. Homing *Mode* 17 is a two step process. - 1. With velocity V1 (0x8300-06) it is traversed toward the target position (0x8300-05) until the homing switch is overrun. - 2. Then it is decelerated to speed 0 and again accelerated (0x8300-08 and 09) and moved in the negative direction at velocity V1. - 3. If the reference switch is overrun again it is again slowed down and it is again accelerated in the positive direction at velocity V2 (0x8300-07). - **4.** With the third overrun of the homing switch the initial position is set and moved to. Objects > Homing - 0x8300 #### 0x8300-07 - Homing velocity V2 | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|---------------------|--------|--------------------|--| | 0x8300-07 | S32 | R/W** | 0 | -8388608
8388607 | [user] | Homing velocity V2 | | | 'Explanation of the elements'page 110 | | | | | | | | This object specifies the velocity V2 for traversing to the initial position. The velocity V2 (0x8300-07) is used in the final stage of homing when approaching the initial position. ### 0x8300-08 - Homing acceleration | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|------------------|--------|---------------------|--|--| | 0x8300-08 | S32 | R/W** | 1000 | 1000
10000000 | [user] | Homing acceleration | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the value for the homing acceleration for traversing the initial position. #### 0x8300-09 - Homing deceleration | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|------------------|--------|---------------------|--|--| | 0x8300-09 | S32 | R/W** | 1000 | 1000
10000000 | [user] | Homing deceleration | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the value for the homing deceleration for traversing the initial position. ### 0x8300-10 - Homing offset value | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|---------------------|--------|---------------------|--|--| | 0x8300-10 | S32 | R/W** | 0 | -8388608
8388607 | [user] | Homing offset value | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the offset between the zero position of the application and the reference point (by homing determined) of the drive. The value is to specify with sign. If the homing is completed and the initial position is reached, the offset is added to the initial position. ### 0x8300-12 - Homing trq mode current | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|-------------|------|-------------------------|--|--| | 0x8300-12 | S16 | R/W** | 500 | 0 15000 | [mA] | Homing trq mode current | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the current limit in the homing method -1 '0x8300-02 - Homing method'...page 129. As soon as the limit is reached, the actual position is used as default position. Objects > Parameter for the PtP positioning profile - 0x8400 ### 0x8300-13 - Homing trq mode distance | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|-------------|--------|--------------------------|--|--| | 0x8300-13 | S32 | R/W** | 1000 | 0 100000 | [user] | Homing trq mode distance | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies a position offset, the motor is moved free, as soon as the current limit is reached with the homing method -1 '0x8300-02 - Homing method'...page 129. ### 5.2.12 Parameter for the PtP positioning profile - 0x8400 #### 0x8400-00 - Positioning profile - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |----------------------------------|---------------------------------------|----|---------|-------------|------|---|--|--|--| | 0x8400-00 | U08 | R | 5 | 5 | | Positioning profile - number of entries | | | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | | | | 'PtP positioning profile'page 75 | | | | | | | | | | #### 0x8400-02 - Positioning profile target position | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|---------------------|--------|-------------------------------------|--|--| | 0x8400-02* | S32 | R/W** | 0 | -8388608
8388607 | [user] | Positioning profile target position | | | | 'Explanation of the elements'page 110 | | | | | | | | | For the "PtP positioning profile" in this object the new target position is to be specified in user units. '0x8180-02 - Gear factor'...page 126 You can find this object in the I/O area and it should not be written via the Acyclic channel, since the value is overwritten with the next cycle. The positioning is active, if: - the operation mode "PtP positioning profile" is selected - the System SLIO motion module is in state 'Operation enabled' The positioning must not be started specifically by '0x8100-01 - Control word'...page 120. During an ongoing positioning or after reaching the target position 0x8400-02 can be changed and it starts positioning to the new target value. For complete configuration of a positioning and to execute other objects of the index group 0x8400 are required. #### 0x8400-03 - Positioning profile target velocity | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|---------------------|--------|-------------------------------------|--|--| | 0x8400-03* | S32 | R/W** | 0 | -8388608
8388607 | [user] | Positioning profile target velocity | | | | 'Explanation of the elements'page 110 | | | | | | | | | With 'PtP positioning profile'...page 75 this object specifies the speed for traversing to the initial position and is processed as absolute value. With 'Velocity profile'...page 86 the sign determines the direction of rotation. You can find this object in the I/O area and it should not be written via the Acyclic channel, since the value is overwritten with the next cycle. During a running positioning 0x8400-03 can be changed. It is directly accelerated or decelerated, provided the remaining room allows the positioning to the new target value. Objects > Positions and limit values - 0x8480 #### 0x8400-04 - Positioning profile target acceleration | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|------------------|--------|---|--| | 0x8400-04* | S32 | R/W** | 10000 | 300
100000000 | [user] | Positioning profile target acceleration | | | 'Explanation of the elements'page 110 | | | | | | | | This object specifies the acceleration for traversing to the initial
position and is processed as absolute value. You can find this object in the I/O area and it should not be written via the *Acyclic channel*, since the value is overwritten with the next cycle. During a running positioning 0x8400-04 can be changed and is immediately active. ### 0x8400-05 - Positioning profile target deceleration | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|------------------|--------|---|--| | 0x8400-05* | S32 | R/W** | 10000 | 300
100000000 | [user] | Positioning profile target deceleration | | | 'Explanation of the elements'page 110 | | | | | | | | This object specifies the deceleration for traversing to the initial position and is processed as absolute value. You can find this object in the I/O area and it should not be written via the *Acyclic channel*, since the value is overwritten with the next cycle. During a running positioning 0x8400-05 can be changed and is immediately active. ### 5.2.13 Positions and limit values - 0x8480 #### 0x8480-00 - Positions and limits - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-------------|------|--|--|--| | 0x8480-00 | U08 | R | 16 | 16 | | Positions and limits - number of entries | | | | 'Explanation of the elements'page 110 | | | | | | | | | #### 0x8480-02 - Position actual value | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|----|---------|---------------------|--------|-----------------------|--|--|--| | 0x8480-02* | S32 | R | 0 | -8388608
8388607 | [user] | Position actual value | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the value of the actual position. It also can be found in the input area 'In-/Output area'...page 97. In open-loop operation, the object has an internally calculated value, not the current encoder value. #### 0x8480-03 - Target position | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |-----------------|---------------------------------------|----|---------|---------------------|--------|-----------------|--|--| | 0x8480-03 | S32 | R | 0 | -8388608
8388607 | [user] | Target position | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | This object specifies the internal value of the target position at the input of the position controller. It is generated by the superior modules (e.g. PtP ramp generator). Objects > Positions and limit values - 0x8480 #### 0x8480-05 - Software position limit positive direction | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |-----------------|--|-------|---------|---------------------|--------|--|--|--|--| | 0x8480-05 | S32 | R/W** | 8388607 | -8388608
8388607 | [user] | Software position limit positive direction | | | | | 'Explanation of | 'Explanation of the elements' page 110 | | | | | | | | | This object indicates the positive limit for the target position. Each target position is checked against this limit. Before matching always the reference offset '0x8300-10 -Homing offset value'...page 131 is subtracted. - Is a specified target position above the positive limit: - the positioning process is not performed - Bit 11: "Internal limitation active" in '0x8100-02 Status word'...page 121 is set - Bit 10: "Target position" reached in '0x8100-02 Status word'...page 121 is not set - Bit 9: in '0x8100-04 Limit active bits'...page 123 is set - Is a measured actual position above the positive limit: - Bit 8: in '0x8100-04 Limit active bits'...page 123 is set #### 0x8480-06 - Software position limit negative direction | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-------|----------|---------------------|--------|--|--|--|--| | 0x8480-06 | S32 | R/W** | -8388608 | -8388608
8388607 | [user] | Software position limit negative direction | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | This object indicates the negative limit for the target position. Each target position is checked against this limit. Before matching always the reference offset 0x8300-10 is subtracted. - Is a specified target position below the negative limit: - the positioning process is not performed - Bit 11: "Internal limitation active" in '0x8100-02 Status word'...page 121 is set - Bit 10: "Target position" reached in '0x8100-02 Status word'...page 121 is not set - Bit 9: in '0x8100-04 Limit active bits'...page 123 is set - Is a measured actual position below the negative limit: - Bit 8: in '0x8100-04 Limit active bits'...page 123 is set #### 0x8480-07 - Range limit positive direction | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |----------------|---------------------------------------|-----|---------|------------------|--------|--------------------------------|--|--|--| | 0x8480-07 | S32 | R/W | 8000000 | 10000
8388607 | [user] | Range limit positive direction | | | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | | | This object defines the positive overflow limit for the processing of position values. When this value is exceeded, the position values are set to '0x8480-08 - Range limit negative direction'...page 135. Together with the object 0x8480-07 you can define a position range. For example, by presetting '0x8480-05 - Software position limit positive direction'...page 134 and '0x8480-06 - Software position limit negative direction'...page 134 out of the range you will get an endless movement, since the software limits can never be reached during the movement. Objects > Positions and limit values - 0x8480 #### 0x8480-08 - Range limit negative direction | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-----|----------|--------------------|--------|--------------------------------|--|--|--| | 0x8480-08 | S32 | R/W | -8000000 | -8388608
-10000 | [user] | Range limit negative direction | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | This object defines the negative overflow limit for the processing of position values. When this value is exceeded, the position values are set to '0x8480-07 - Range limit positive direction'...page 134. Together with the object 0x8480-08 you can define a position range. For example, by presetting '0x8480-05 - Software position limit positive direction'...page 134 and '0x8480-06 - Software position limit negative direction'...page 134 out of the range you will get an endless movement, since the software limits can never be reached during the movement. #### 0x8480-09 - In-position window | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |----------------|---------------------------------------|-------|---------|---------------------|--------|--------------------|--|--|--| | 0x8480-09 | S32 | R/W** | 10 | -8388608
8388607 | [user] | In-position window | | | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies with relation to the target position a symmetrical range, within which the target position is reached. With 0 the In-position window is disabled. #### 0x8480-10 - Lag error | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|----|---------|---------------------|--------|-------------|--| | 0x8480-10* | S32 | R | 0 | -8388608
8388607 | [user] | Lag error | | | 'Explanation of the elements'page 110 | | | | | | | | This object contains the current system deviation as a deviation between target position and current value. This deviation is called *Lag error*. You can find this object in the I/O area. #### 0x8480-11 - Lag error warning | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-------|---------|---------------------|--------|-------------------|--|--|--| | 0x8480-11 | S32 | R/W** | 100 | -8388608
8388607 | [user] | Lag error warning | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies a limit for the position difference (lag error). When the limit is reached, this is reported as a warning. '0x8100-02 - Status word'…page 121 '0x8100-05 - Warnings active bits'…page 124 With 0 you will receive a warning at the slightest deviation. Objects > Velocities and limit values - 0x8500 #### 0x8480-12 - Lag error error | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |--|------|-------|---------|---------------------|--------|-----------------|--| | 0x8480-12 | S32 | R/W** | 1000 | -8388608
8388607 | [user] | Lag error error | | | 'Explanation of the elements' page 110 | | | | | | | | This object specifies a limit for the position difference (lag error). When the limit is reached, this is reported as a error and the motion module switches to error status '0x8100-02 - Status word'...page 121 '0x8100-06 - Error active bits'...page 125 ### 0x8480-13 - Position control P-part | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-------|---------|-------------|------|-------------------------|--|--|--| | 0x8480-13 | U16 | R/W** | 500 | 0 32000 | | Position control P-part | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | |
| | | | | P-part of the position control ### 0x8480-14 - Position control I-part | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|-------------|------|-------------------------|--|--| | 0x8480-14 | U16 | R/W** | 10 | 0 32000 | | Position control I-part | | | | 'Explanation of the elements'page 110 | | | | | | | | | I-part of the position control. ### 0x8480-15 - Position control D-part | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-------|---------|-------------|------|-------------------------|--|--|--| | 0x8480-15 | U16 | R/W** | 10 | 0 32000 | | Position control D-part | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | D-part of the position control #### 0x8480-16 - Position control shift factor | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-----|---------|-------------|------|-------------------------------|--|--|--| | 0x8480-16 | U16 | R/W | 12 | 0 24 | | Position control shift factor | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | This parameter is used to limit the generated speed during the positioning. The smaller the value, the greater the limitation. ### 5.2.14 Velocities and limit values - 0x8500 ### 0x8500-00 - Velocity - number of entries | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-------------|------|------------------------------|--|--| | 0x8500-00 | U08 | R | 13 | 13 | | Velocity - number of entries | | | | 'Explanation of the elements'page 110 | | | | | | | | | Objects > Velocities and limit values - 0x8500 #### 0x8500-01 - Velocity control configuration | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-----|---------|----------------|------|--------------------------------|--| | 0x8500-01 | U32 | R/W | 0 | 0
0xFFFFFFF | | Velocity control configuration | | | 'Explanation of the elements'page 110 | | | | | | | | With this object, you can disable the PtP position profile respectively the velocity profile for the velocity control. Here, the target velocity setting happens by the following objects: - 0: Velocity control via PtP position profile and velocity profile with set point velocity setting via '0x8400-03 - Positioning profile target velocity'...page 132. This is the default setting. - 1: Velocity control exclusively velocity profile with set point velocity setting via '0x8500-03 Velocity control target value'...page 137. - 2: PtP position profile and velocity profile are disabled with set point velocity setting as set point frequency for the PWM stage. #### 0x8500-02 - Velocity control actual value | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-----------------------|--------|-------------------------------|--|--| | 0x8500-02* | S32 | R | 0 | -10000000
10000000 | [user] | Velocity control actual value | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the value of the actual velocity. It also can be found in the input area 'In-/Output area'...page 97. In open loop operation, the object has an internally calculated value, not determined from the current encoder value. #### 0x8500-03 - Velocity control target value | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|-----------------------|--------|-------------------------------|--|--| | 0x8500-03 | S32 | R/W** | 0 | -10000000
10000000 | [user] | Velocity control target value | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the internal value of the target velocity at the input of the velocity controller. It is generated by the superior modules (e.g. PtP ramp generator). ### 0x8500-04 - Velocity control limit positive direction | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-------|---------|-------------|--------|---|--|--|--| | 0x8500-04 | S32 | R/W** | 100000 | 0 10000000 | [user] | Velocity control limit positive direction | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | This object indicates the positive limit for velocity. Each target velocity is checked against this limit. Objects > Velocities and limit values - 0x8500 #### 0x8500-05 - Velocity control limit negative direction | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|-------------|--------|---|--|--| | 0x8500-05 | S32 | R/W** | -100000 | -10000000 0 | [user] | Velocity control limit negative direction | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object indicates the negative limit for velocity. Each target velocity is checked against this limit. #### 0x8500-06 - Velocity control range for torque limit | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|---------------------|--------|---|--|--| | 0x8500-06 | S32 | R/W** | -20000 | -1000000
1000000 | [user] | Velocity control range for torque limit | | | | 'Explanation of the elements'page 110 | | | | | | | | | For the operating mode Torque control '0x8280-01 - Operating mode requested'...page 128 here you can specify an area for the velocity limitation. This area is a measure for deceleration as soon as the corresponding limit value '0x8500-04 - Velocity control limit positive direction'...page 137 respectively '0x8500-05 - Velocity control limit negative direction'...page 138 is exceeded. #### 0x8500-07 - Velocity control limit type for torque mode | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|----------------|------|---|--| | 0x8500-07 | U32 | R/W** | 0 | 0
0xFFFFFFF | | Velocity control limit type for torque mode | | | 'Explanation of the elements'page 110 | | | | | | | | #### 0: Smooth velocity limit The pre-set velocity limit '0x8500-04 - Velocity control limit positive direction'...page 137 respectively '0x8500-05 - Velocity control limit negative direction'...page 138 is always reached. When the limit is exceeded, no abrupt deceleration takes place. A slight overshoot is allowed. Here, the current set point is, dependent on the difference between current velocity and permissible limit range '0x8500-06 - Velocity control range for torque limit'...page 138 linearly reduced to "0". #### 1: Hard velocity limit The pre-set velocity limit '0x8500-04 - Velocity control limit positive direction'...page 137 respectively '0x8500-05 - Velocity control limit negative direction'...page 138 is reached with maximum permissible current. When the limit is exceeded, an abrupt deceleration takes place. #### 0x8500-11 - Velocity control P-part | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|-------------|------|-------------------------|--|--| | 0x8500-11 | U16 | R/W** | 0 | 0 65535 | | Velocity control P-part | | | | 'Explanation of the elements'page 110 | | | | | | | | | P-part of the velocity control Objects > Acceleration and deceleration - 0x8580 ### 0x8500-12 - Velocity control I-part | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-------|---------|-------------|------|-------------------------|--|--| | 0x8500-12 | U16 | R/W** | 0 | 0 65535 | | Velocity control I-part | | | | 'Explanation of the elements'page 110 | | | | | | | | | I-part of the velocity control #### 0x8500-13 - Velocity control D-part | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|-------------|------|-------------------------|--| | 0x8500-13 | U16 | R/W** | 0 | 0 65535 | | Velocity control D-part | | | 'Explanation of the elements'page 110 | | | | | | | | D-part of the velocity control ### 5.2.15 Acceleration and deceleration - 0x8580 #### 0x8580-00 - Acceleration and deceleration - number entries | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|----|---------|-------------|------|--|--| | 0x8580-00 | U08 | R | 6 | 6 | | Acceleration and deceleration - number entries | | | 'Explanation of the elements'page 110 | | | | | | | | ### 0x8580-02 - Acceleration/Deceleration actual value | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|----|---------|-------------------------|--------|--|--| | 0x8580-02* | S32 | R | 0 | -100000000
100000000 | [user] | Acceleration/Deceleration actual value | | | 'Explanation of the elements'page 110 | | | | | | | | This object specifies the value of the actual acceleration (positive sign) respectively deceleration (negative sign). It also can be found in the input area 'In-/Output area'...page 97. In open loop operation, the object has an internally calculated value, not determined from the current encoder value. ### 0x8580-03 - Deceleration quick stop value | Index-Sub | Туре | RW | Default | Value range | Unit |
Description | | | |----------------|---------------------------------------|-------|---------|-----------------|--------|-------------------------------|--|--| | 0x8580-03 | S32 | R/W** | 10000 | 10
100000000 | [user] | Deceleration quick stop value | | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | | This object specifies the value of the target deceleration in case of a quick stop. Objects > Currents - 0x8600 #### 0x8580-04 - Acceleration limit | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|-----------------|--------|--------------------|--| | 0x8580-04 | S32 | R/W** | 100000 | 10
100000000 | [user] | Acceleration limit | | | 'Explanation of the elements'page 110 | | | | | | | | This object indicates the bidirectional limit value for the set point acceleration value. Each set point acceleration value is checked against this limit value. Please note that the lower limit is unequal 0. As soon as a set point velocity value is active, the movement starts, although the set point acceleration is 0. #### 0x8580-06 - Deceleration limit | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|-----------------|--------|--------------------|--| | 0x8580-06 | S32 | R/W** | 100000 | 10
100000000 | [user] | Deceleration limit | | | 'Explanation of the elements'page 110 | | | | | | | | This object indicates the bidirectional limit value for the set point deceleration value. Each set point deceleration value is checked against this limit value. Please note that the lower limit is unequal 0. As soon as a set point velocity value is active, the movement starts, although the set point deceleration is 0. #### 5.2.16 Currents - 0x8600 #### 0x8600-00 - CUR current number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|----|---------|-------------|------|-----------------------------|--| | 0x8600-00 | U08 | R | 21 | 21 | | Current - number of entries | | | 'Explanation of the elements'page 110 | | | | | | | | #### 0x8600-02 - Current actual value | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |-----------------|---------------------------------------|----|---------|-----------------|------|----------------------|--|--| | 0x8600-02* | S16 | R | 0 | -15000
15000 | [mA] | Current actual value | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | Effective value of the actual current of the winding in mA. #### 0x8600-03 - Current target value | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |--|------|-------|---------|-----------------|------|-------------------|--| | 0x8600-03* | S16 | R/W** | 0 | -15000
15000 | [mA] | Current set value | | | 'Explanation of the elements' page 110 | | | | | | | | , 3 For the operating mode *Torque control '0x8280-01 - Operating mode requested'...page 128*, here the effective value of the set point current can be defined. For all other operating modes, with this object you can define a dynamic current limit, which is limited only by '0x8C00-04 - Motor max. current'...page 147. Here '0x8600-04 - Current limit positive direction'...page 141 and '0x8600-05 - Current limit negative direction'...page 141 have no effect. Objects > Currents - 0x8600 #### 0x8600-04 - Current limit positive direction | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |--|------|-------|---------|-------------|------|----------------------------------|--| | 0x8600-04* | S16 | R/W** | 200 | 0 15000 | [mA] | Current limit positive direction | | | 'Explanation of the elements' nage 110 | | | | | | | | For the operating mode Torque control '0x8280-01 - Operating mode requested'...page 128, here the effective value of the set point current can be defined. In all other operating modes this object is not considered. Please note that this value must be symmetrical '0x8600-05 - Current limit negative direction'...page 141! #### 0x8600-05 - Current limit negative direction | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|-------------|------|----------------------------------|--| | 0x8600-05* | S16 | R/W** | -200 | -15000 0 | [mA] | Current limit negative direction | | | 'Explanation of the elements'page 110 | | | | | | | | This object defines the limit value for the target current in negative direction. Current limit positive/negative: Both values have the same magnitude, e.g. 0x8600-04 = 2000mA, 0x8600-05 = -2000mA. An asymmetric adjustment is not currently supported. #### 0x8600-06 - Current control P-part | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|-------------|------|------------------------|--| | 0x8600-06 | U16 | R/W** | 1000 | 0 65535 | | Current control P-part | | | 'Explanation of the elements'page 110 | | | | | | | | P-part of the current controller. #### 0x8600-07 - Current control I-part | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|-------------|------|------------------------|--| | 0x8600-07 | U16 | R/W** | 4000 | 0 65535 | | Current control I-part | | | 'Explanation of the elements'page 110 | | | | | | | | I-part of the current controller. #### 0x8600-09 - Current control filter factor | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-------|---------|-------------|------|-------------------------------|--| | 0x8600-09 | U16 | R/W** | 1 | 0 7 | | Current control filter factor | | | 'Explanation of the elements'page 110 | | | | | | | | To reduce high-frequency interferences at the current sensor, here you can set the filter factor of the low-pass filter for the current sensor. Objects > Currents - 0x8600 ### 0x8600-10 - Current actual value winding A | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-----------------|------|---------------------------------|--|--| | 0x8600-10 | S16 | R | 0 | -15000
15000 | [mA] | Current actual value in winding | | | | 'Explanation of the elements'page 110 | | | | | | | | | Effective value in mA of the actual current in winding. ### 0x8600-12 - Current target value winding A | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-----------------|------|------------------------------|--|--| | 0x8600-12 | S16 | R | 0 | -15000
15000 | [mA] | Current set value in winding | | | | 'Explanation of the elements'page 110 | | | | | | | | | Effective value in mA of the set current in winding. #### 0x8600-14 - Current offset value winding A | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-------|---------|-------------|------|---------------------------------|--|--|--| | 0x8600-14 | S16 | R/W** | 0 | -500 500 | [mA] | Current offset value in winding | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | - 1 Output voltage - 2 Current value - 3 Ratio between current and voltage (I/U) - 4 Set value - 5 Offset - 6 Output current 0x8600-14 - This object specifies the offset of the analog current actual value detection to 0 in winding. 0x8600-16 - This object specifies the ratio between current and voltage (I/U) of the analog current actual value detection in winding. Objects > Voltages - 0x8680 0x8600-16 - Current voltage ratio winding A | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|--|-------|---------|-------------|------|----------------------------------|--|--|--| | 0x8600-16 | S16 | R/W** | 4724 | 2000 6000 | | Current voltage ratio in winding | | | | | 'Explanation of | 'Explanation of the elements' page 110 | | | | | | | | | - 1 Output voltage - 2 Current value - 3 Ratio between current and voltage (I/U) - 4 Set value - 5 Offset - 6 Output current 0x8600-14 - This object specifies the offset of the analog current actual value detection to 0 in winding. 0x8600-16 - This object specifies the ratio between current and voltage (I/U) of the analog current actual value detection in winding. To change this value is not usually required. Should this value be changed first, to avoid an error notification of the motion module, '0x8C00-04 - Motor max. current'...page 147 should be set. ### 5.2.17 Voltages - 0x8680 ### 0x8680-00 - Voltages - number of entries | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|----|---------|-------------|------|------------------------------|--|--|--| | 0x8680-00 | U08 | R | 7 | 7 | | Voltages - number of entries | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | ### 0x8680-02 - Power section supply voltage actual value | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|----|---------|-------------|---------|---|--|--|--| | 0x8680-02 | U16 | R | 0 | 0 6000 | [0.01V] | Power section supply voltage actual value | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the level of the actual supply voltage. Objects > Voltages - 0x8680 #### 0x8680-04 - Power section supply voltage min. warning level |
Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-----|---------|-------------|---------|---|--|--|--| | 0x8680-04 | U16 | R/W | 4100 | 0 6000 | [0.01V] | Power section supply voltage min. warning level | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies a lower limit for the supply voltage of the module. If the limit is exceeded, via '0x8100-02 - Status word'...page 121 respectively '0x8100-05 - Warnings active bits'...page 124 a warning is shown. ### 0x8680-05 - Power section supply voltage max. warning level | Index-Sub | Type | RW | Default | Value range | Unit | Description | |-----------------|-------------|---------|---------|-------------|---------|---| | 0x8680-05 | U16 | R/W | 5500 | 0 6000 | [0.01V] | Power section supply voltage max. warning level | | 'Explanation of | of the eler | ments'p | age 110 | | | | This object specifies an upper limit for the supply voltage of the module. If the limit is exceeded, via '0x8100-02 - Status word'...page 121 respectively '0x8100-05 - Warnings active bits'...page 124 a warning is shown. #### 0x8680-06 - Power section supply voltage min. error level | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-----|---------|-------------|---------|---|--|--|--| | 0x8680-06 | U16 | R/W | 3800 | 0 6000 | [0.01V] | Power section supply voltage min. error level | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies a lower limit for the supply voltage of the module. If the limit is undershot, via '0x8100-02 - Status word'...page 121 respectively '0x8100-06 - Error active bits'...page 125 an error is shown. ### 0x8680-07 - Power section supply voltage max. error level | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |----------------|---------------------------------------|-----|---------|-------------|---------|---|--|--|--| | 0x8680-07 | U16 | R/W | 5800 | 0 6000 | [0.01V] | Power section supply voltage max. error level | | | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies an upper limit for the supply voltage of the module. If the limit is exceeded, via '0x8100-02 - Status word'...page 121 respectively '0x8100-06 - Error active bits'...page 125 an error is shown. ### 0x8680-08 - Control voltage power stage actual value | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-------------|---------|--|--|--| | 0x8680-08 | U16 | R | 0 | 0 4000 | [0.01V] | Control voltage power stage actual value | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the level of the actual supply voltage of the power stage. Objects > Temperatures - 0x8780 #### 0x8680-10 - Control voltage power stage min. warning level | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |-----------------|---------------------------------------|-----|---------|-------------|---------|--|--|--| | 0x8680-10 | U16 | R/W | 850 | 0 4000 | [0.01V] | Control voltage power stage min. warning level | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | This object specifies a lower limit for the control voltage of the power stage. If the limit is exceeded, via '0x8100-02 - Status word'...page 121 respectively '0x8100-05 - Warnings active bits'...page 124 a warning is shown. ### 0x8680-11 - Control voltage power stage max. warning level | Index-Sub | Type | RW | Default | Value range | Unit | Description | |-----------------|-------------|---------|---------|-------------|---------|--| | 0x8680-11 | U16 | R/W | 1200 | 0 4000 | [0.01V] | Control voltage power stage max. warning level | | 'Explanation of | of the eler | ments'p | age 110 | | | | This object specifies an upper limit for the control voltage of the power stage. If the limit is exceeded, via '0x8100-02 - Status word'...page 121 respectively '0x8100-05 - Warnings active bits'...page 124 a warning is shown. #### 0x8680-12 - Control voltage power stage min. error level | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |----------------|---------------------------------------|-----|---------|-------------|---------|--|--|--|--| | 0x8680-12 | U16 | R/W | 800 | 0 4000 | [0.01V] | Control voltage power stage min. error level | | | | | 'Explanation o | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies a lower limit for the control voltage of the power stage. If the limit is undershot, via '0x8100-02 - Status word'...page 121 respectively '0x8100-06 - Error active bits'...page 125 an error is shown. ### 0x8680-13 - Control voltage power stage max. error level | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-----|---------|-------------|---------|--|--| | 0x8680-13 | U16 | R/W | 1400 | 0 4000 | [0.01V] | Control voltage power stage max. error level | | | 'Explanation of the elements'page 110 | | | | | | | | This object specifies an upper limit for the control voltage of the power stage. If the limit is exceeded, via '0x8100-02 - Status word'...page 121 respectively '0x8100-06 - Error active bits'...page 125 an error is shown. ### 5.2.18 Temperatures - 0x8780 #### 0x8780-00 - Temperatures - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|----|---------|-------------|------|----------------------------------|--| | 0x8780-00 | U08 | R | 9 | 9 | | Temperatures - number of entries | | | 'Explanation of the elements'page 110 | | | | | | | | Objects > Temperatures - 0x8780 ### 0x8780-02 - Temperature µ-Controller actual value | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-------------|--------|---------------------------------------|--|--| | 0x8780-02 | S16 | R | 0 | -50 120 | [degC] | Temperature µ-Controller actual value | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the measured temperature of the µ-Controller of the motion module. #### 0x8780-03 - Temperature μ-Controller warning level | Index-Sub | Type | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-----|---------|-------------|--------|--|--| | 0x8780-03 | S16 | R/W | 90 | -50 120 | [degC] | Temperature µ-Controller warning level | | | 'Explanation of the elements'page 110 | | | | | | | | This object specifies the temperature limit of the μ -Controller of the motion module. If the temperature limit is exceeded, via '0x8100-02 - Status word'…page 121 respectively '0x8100-05 - Warnings active bits'…page 124 a warning is shown. #### 0x8780-04 - Temperature μ-Controller error level | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-----|---------|-------------|--------|--------------------------------------|--|--| | 0x8780-04 | S16 | R/W | 105 | -50 120 | [degC] | Temperature µ-Controller error level | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the temperature limit of the μ -Controller of the motion module. If the limit is reached, via '0x8100-02 - Status word'…page 121 respectively '0x8100-06 - Error active bits'…page 125 an error is shown and the status of the motion module changes to 'Fault reaction active'. ### 0x8780-07 - Temperature power stage actual value | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|----|---------|-------------|--------|--------------------------------------|--| | 0x8780-07 | S16 | R | 0 | -50 120 | [degC] | Temperature power stage actual value | | | 'Explanation of the elements'page 110 | | | | | | | | This object specifies the measured temperature of the internal power stage. #### 0x8780-08 - Temperature power stage warning level | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|-----|---------|-------------|--------|---------------------------------------|--| | 0x8780-08 | S16 | R/W | 90 | -50 120 | [degC] | Temperature power stage warning level | | | 'Explanation of the elements'page 110 | | | | | | | | This object specifies a temperature limit for the internal power stage. If the temperature limit is exceeded, via '0x8100-02 - Status word'...page 121 respectively '0x8100-05 - Warnings active bits'...page 124 a warning is shown. Objects > Motor data - 0x8C00 #### 0x8780-09 -Temperature power stage error level | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-----|---------|-------------|--------|-------------------------------------|--|--| | 0x8780-09 | S16 | R/W | 105 | -50 120 | [degC] | Temperature power stage error level | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies a temperature limit for the internal power stage. If the temperature limit is reached, via '0x8100-02 - Status word'...page 121 respectively '0x8100-06 - Error active bits'...page 125 an error is shown and the status
of the motion module changes to 'Fault reaction active'. ### 5.2.19 Motor data - 0x8C00 #### 0x8C00-00 - Motor data - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | |---------------------------------------|------|----|---------|-------------|------|--------------------------------|--| | 0x8C00-00 | U08 | R | 10 | 10 | | Motor data - number of entries | | | 'Explanation of the elements'page 110 | | | | | | | | #### 0x8C00-04 - Motor max. current | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-----|---------|-------------|------|--------------------|--|--| | 0x8C00-04 | U16 | R/W | 500 | 0 15000 | [mA] | Motor max. current | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the maximum effective value of the motor current and must be configured. Exceeds the actual current in operation this value, there is a fault response of the motion module, which is shown in '0x8100-02 - Status word'...page 121 respectively '0x8100-06 - Error active bits'...page 125 bit 0. #### 0x8C00-06 - Motor nominal velocity | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-----|---------|-------------|-------|------------------------|--|--|--| | 0x8C00-06 | U16 | R/W | 0 | 0 32000 | [rpm] | Motor nominal velocity | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | Details can be found in the data sheet of your motor. #### 0x8C00-07 - Motor max. velocity | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-----|---------|-------------|-------|---------------------|--|--| | 0x8C00-07 | U16 | R/W | 3000 | 0 32000 | [rpm] | Motor max. velocity | | | | 'Explanation of the elements'page 110 | | | | | | | | | This object specifies the max. velocity of the motor and must be configured. At this velocity, the output of the position controller is limited and will not be used to monitor the actual velocity. Objects > Encoder resolution - 0x8F00 ### 0x8C00-09 - Motor velocity constant | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | | |-----------------|---------------------------------------|-----|---------|-------------|------------|-------------------------|--|--|--|--| | 0x8C00-09 | U16 | R/W | 1000 | 0 65535 | [0.1rpm/V] | Motor velocity constant | | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | | Details can be found in the data sheet of your motor. #### 0x8C00-10 - Motor phase resistance | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|-----|---------|-------------|-------------|------------------------|--|--| | 0x8C00-10 | U16 | R/W | 0 | 0 65535 | $[m\Omega]$ | Motor phase resistance | | | | 'Explanation of the elements'page 110 | | | | | | | | | Details can be found in the data sheet of your motor. ### 5.2.20 Encoder resolution - 0x8F00 ### 0x8F00-00 - Encoder - number of entries | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-------------|------|-----------------------------|--|--| | 0x8F00-00 | U08 | R | 3 | 3 | | Encoder - number of entries | | | | 'Explanation of the elements'page 110 | | | | | | | | | ### 0x8F00-01 - Encoder feedback configuration | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | | |-----------------|--|-----|---------|-------------|------|---|--|--|--| | 0x8F00-01 | U32 | R/W | 0 | 0 1 | | Encoder feedback configuration drive 1
Configuration I/O1 and I/O3 | | | | | 'Explanation of | 'Explanation of the elements' page 110 | | | | | | | | | With this object the digital in-/outputs I/O1 and I/O3 are physically configured as encoder input. - 0: Encoder functionality for I/01 and I/O3 is disabled - 1: Encoder functionality for I/01 and I/O3 is enabled - 24V HTL signal - Phase A and B - 100 kHz - 4-fold evaluation If there is no more encoder connected, the unused digital in-/outputs I/O2 and I/O4 are further free for usage. | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-----|---------|-------------|------|--|--|--|--| | 0x9F00-01 | U32 | R/W | 0 | 0 1 | | Encoder feedback configuration drive 2 | | | | | | | | | | | Configuration I/O2 and I/O4 | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | Objects > Encoder resolution - 0x8F00 With this object the digital in-/outputs I/O2 and I/O4 are physically configured as encoder input. - 0: Encoder functionality for I/02 and I/O4 is disabled - 1: Encoder functionality for I/02 and I/O4 is enabled - 24V HTL signal - Phase A and B - 100 kHz - 4-fold evaluation #### 0x8F00-02 - Encoder actual value | Index-Sub | Туре | RW | Default | Value range | Unit | Description | | | |---------------------------------------|------|----|---------|-------------|-------|-----------------------|--|--| | 0x8F00-02 | U16 | R | 0 | 0 65535 | [inc] | Encoder current value | | | | 'Explanation of the elements'page 110 | | | | | | | | | With this object you can get the actual value of a possibly connected encoder. When using the 'PtP positioning profile'...page 75, via '0x8F00-01 - Encoder feedback configuration'...page 148 you can define the use of the encoder signal. #### 0x8F00-03 - Encoder resolution | Index-Sub | Type | RW | Default | Value range | Unit | Description | | | | |-----------------|---------------------------------------|-----|---------|-------------|-----------|--------------------|--|--|--| | 0x8F00-03 | U16 | R/W | 4000 | 0 65535 | [inc/rot] | Encoder resolution | | | | | 'Explanation of | 'Explanation of the elements'page 110 | | | | | | | | | With this object, you can configure the encoder resolution of the connected encoder. The encoder resolution defines the number of pulses per rotation.